
django-autocomplete-light
Documentation

Release 2.3.3

James Pic

Mar 28, 2018

Contents

1 Projects upgrading to Django 1.9 3

2 Features 5

3 Resources 7

4 Live Demo 9

5 Installation 13

6 Tutorial 17

7 Reference and design documentation 21

8 Topics 37

9 FAQ 47

10 API: find hidden gems 53

11 Upgrade 67

12 Documentation that has not yet been ported to v2 73

13 Indices and tables 81

Python Module Index 83

i

ii

django-autocomplete-light Documentation, Release 2.3.3

django-autocomplete-light’s purpose is to enable autocompletes quickly
and properly in a django project: it is the fruit of half a decade of R&D and thousands of contributions. It was
designed for Django so that every part overridable or reusable independently. It is stable, tested, documented and fully
supported: it tries to be a good neighbour in Django ecosystem.

Contents 1

https://pypi.python.org/pypi/django-autocomplete-light
http://badge.fury.io/py/django-autocomplete-light
http://travis-ci.org/yourlabs/django-autocomplete-light
https://codecov.io/github/yourlabs/django-autocomplete-light?branch=master

django-autocomplete-light Documentation, Release 2.3.3

2 Contents

CHAPTER 1

Projects upgrading to Django 1.9

DAL has been ready for Django 1.9 since April 2015 thanks to @blueyed & @jpic. HOWEVER due to the app
loading refactor in 1.9 you should apply the following:

find . -name '*.py' | xargs perl -i -pe 's/import autocomplete_light/from
→˓autocomplete_light import shortcuts as autocomplete_light/'

See the test_project running on Django 1.9 and its new cool admin theme: http://dal-yourlabs.rhcloud.com/admin
(test:test).

3

http://dal-yourlabs.rhcloud.com/admin

django-autocomplete-light Documentation, Release 2.3.3

4 Chapter 1. Projects upgrading to Django 1.9

CHAPTER 2

Features

Features include:

• charfield, foreign key, many to many autocomplete widgets,

• generic foreign key, generic many to many autocomplete widgets,

• django template engine support for autocompletes, enabling you to include images etc . . .

• 100% overridable HTML, CSS, Python and Javascript: there is no variable hidden far down in the scope any-
where.

• add-another popup supported outside the admin too.

• keyboard is supported with enter, tab and arrows by default.

• Django 1.7 to 1.10, PyPy, Python 2 and 3, PostgreSQL, SQLite, MySQL

Each feature has a live example and is fully documented. It is also designed and documented so that you create your
own awesome features too.

5

django-autocomplete-light Documentation, Release 2.3.3

6 Chapter 2. Features

CHAPTER 3

Resources

Resources include:

• **Documentation** graciously hosted by RTFD

• Live demo graciously hosted by RedHat, thanks to PythonAnywhere for hosting it in the past,

• Video demo graciously hosted by Youtube,

• Mailing list graciously hosted by Google

• Git graciously hosted by GitHub,

• Package graciously hosted by PyPi,

• Continuous integration graciously hosted by Travis-ci

• **Online paid support** provided via HackHands,

7

http://django-autocomplete-light.rtfd.org
http://rtfd.org
http://dal-yourlabs.rhcloud.com/
http://openshift.com
http://pythonanywhere.com/
http://youtu.be/fJIHiqWKUXI
http://youtube.com
http://groups.google.com/group/yourlabs
http://groups.google.com
https://github.com/yourlabs/django-autocomplete-light/
http://github.com
http://pypi.python.org/pypi/django-autocomplete-light/
http://pypi.python.org/pypi
http://travis-ci.org/yourlabs/django-autocomplete-light
http://travis-ci.org
https://hackhands.com/jpic/

django-autocomplete-light Documentation, Release 2.3.3

8 Chapter 3. Resources

CHAPTER 4

Live Demo

While you can use the live demo hosted by RedHat on OpenShift, you can run test projects for a local demo in a
temporary virtualenv.

4.1 test_project: basic features and examples

Virtualenv is a great solution to isolate python environments. If necessary, you can install it from your package
manager or the python package manager, ie.:

sudo easy_install virtualenv

4.1.1 Install last release

Install packages from PyPi and the test project from Github:

rm -rf django-autocomplete-light autocomplete_light_env/

virtualenv autocomplete_light_env
source autocomplete_light_env/bin/activate
git clone --recursive https://jpic@github.com/yourlabs/django-autocomplete-light.git
pip install django-autocomplete-light
cd django-autocomplete-light/test_project
pip install -r requirements.txt
./manage.py runserver

4.1.2 Or install the development version

Install directly from github:

9

http://dal-yourlabs.rhcloud.com

django-autocomplete-light Documentation, Release 2.3.3

rm -rf autocomplete_light_env/

virtualenv autocomplete_light_env
source autocomplete_light_env/bin/activate
pip install -e git+git://github.com/yourlabs/django-autocomplete-light.git
→˓#egg=autocomplete_light
cd autocomplete_light_env/src/autocomplete-light/test_project
pip install -r requirements.txt
./manage.py runserver

4.1.3 Usage

• Run the server,

• Connect to /admin/, ie. http://localhost:8000/admin/,

• Login with user “test” and password “test”,

• Try the many example applications,

4.1.4 Database

A working SQLite database is shipped, but you can make your own ie.:

cd test_project
rm -rf db.sqlite
./manage.py syncdb --noinput
./manage.py migrate
./manage.py cities_light

Note that test_project/project_specific/models.py filters cities from certain countries.

4.2 test_remote_project: advanced features and examples

The autocomplete can suggest results from a remote API - objects that do not exist in the local database.

This project demonstrates how test_remote_project can provide autocomplete suggestions using the database from
test_project.

4.2.1 Usage

In one console:

cd test_project
./manage.py runserver

In another:

cd test_remote_project
./manage.py runserver 127.0.0.1:8001

10 Chapter 4. Live Demo

http://localhost:8000/admin/

django-autocomplete-light Documentation, Release 2.3.3

Now, note that there are no or few countries in test_api_project database.

Then, connect to http://localhost:8001/admin/remote_autocomplete/address/add/ and the city autocomplete should
propose cities from both projects.

If you’re not going to use localhost:8000 for test_project, then you should update source urls in
test_remote_project/remote_autocomplete/autocomplete_light_registry.py.

4.2. test_remote_project: advanced features and examples 11

http://localhost:8001/admin/cities_light/country/
http://localhost:8001/admin/remote_autocomplete/address/add/

django-autocomplete-light Documentation, Release 2.3.3

12 Chapter 4. Live Demo

CHAPTER 5

Installation

Advanced Django users are likely to install it in no time by following this step-list. Click on a step for details.

5.1 Install the django-autocomplete-light>=2.0.0pre package
with pip

Install the stable release, preferably in a virtualenv:

pip install django-autocomplete-light

Or the development version:

pip install -e git+https://github.com/yourlabs/django-autocomplete-light.git
→˓#egg=autocomplete_light

5.2 Append 'autocomplete_light' to settings.
INSTALLED_APPS before django.contrib.admin

Enable templates and static files by adding autocomplete_light to settings.INSTALLED_APPS which is ed-
itable in settings.py. For example:

INSTALLED_APPS = [
[...] your list of app packages is here, add this:
'autocomplete_light',

]

13

http://virtualenv.org
https://docs.djangoproject.com/en/dev/ref/settings/#installed-apps

django-autocomplete-light Documentation, Release 2.3.3

5.3 Django < 1.7 support: call autocomplete_light.
autodiscover() before admin.autodiscover()

In urls.py, call autocomplete_light.autodiscover() before admin.autodiscover() and before
any import of a form with autocompletes. It might look like this:

import autocomplete_light.shortcuts as al
import every app/autocomplete_light_registry.py
al.autodiscover()

import admin
admin.autodiscover()

Also, if you have yourapp.views which imports a form that has autocomplete, say SomeForm, this will work:

import autocomplete_light.shortcuts as al
al.autodiscover()

from yourapp.views import SomeCreateView

But this won’t:

from yourapp.views import SomeCreateView

import autocomplete_light.shortcuts as al
al.autodiscover()

That is because auto-discovery of autocomplete classes should happen before definition of forms using autocompletes.

5.4 Include autocomplete_light.urls

Install the autocomplete view and staff debug view in urls.py using the include function. Example:

Django 1.4 onwards:
from django.conf.urls import patterns, url, include

Django < 1.4:
from django.conf.urls.default import patterns, url, include

urlpatterns = patterns('',
[...] your url patterns are here
url(r'^autocomplete/', include('autocomplete_light.urls')),

)

5.5 Ensure you understand django.contrib.staticfiles

If you’re just trying this out using the Django runserver, that will take care of staticfiles for you - but for production,
you’ll need to understand django-staticfiles to get everything working properly. If you don’t, here’s a good article
about staticfiles or refer to the official Django howto and Django topic.

14 Chapter 5. Installation

https://docs.djangoproject.com/en/dev/topics/http/urls/#including-other-urlconfs
http://blog.yourlabs.org/post/30382323418/surviving-django-contrib-staticfiles-or-how-to-manage
http://blog.yourlabs.org/post/30382323418/surviving-django-contrib-staticfiles-or-how-to-manage
https://docs.djangoproject.com/en/dev/howto/static-files/
https://docs.djangoproject.com/en/dev/ref/contrib/staticfiles/

django-autocomplete-light Documentation, Release 2.3.3

5.6 Include autocomplete_light/static.html after loading
jquery.js (>=1.7)

Load the javascript scripts after loading jquery.js, for example by doing:

{% load static %}
<script src="{% static 'admin/js/vendor/jquery/jquery.min.js' %}" type="text/
→˓javascript"></script>
{% include 'autocomplete_light/static.html' %}

5.7 Optionally include it in admin/base_site.html too

For admin support, override admin/base_site.html. For example:

{% extends "admin/base.html" %}
{% load static %}

{% block extrahead %}
{{ block.super }}
<script src="{% static 'admin/js/vendor/jquery/jquery.min.js' %}" type="text/

→˓javascript"></script>
{% include 'autocomplete_light/static.html' %}

{% endblock %}

Note: There is nothing magic in how the javascript loads. This means that you can use django-compressor or
anything.

If you didn’t click any, and this is your first install: bravo !

5.6. Include autocomplete_light/static.html after loading jquery.js (>=1.7) 15

http://blog.yourlabs.org/post/19777151073/how-to-override-a-view-from-an-external-django-app
https://github.com/jezdez/django_compressor

django-autocomplete-light Documentation, Release 2.3.3

16 Chapter 5. Installation

CHAPTER 6

Tutorial

Enabling autocompletes inside and outside of the admin has become piece of cake.

6.1 Quick start: adding simple autocompletes

This tutorial guides you through the process of enabling autocomplete for a simple form. We’ll enable autocompletion
for Person on the form of an Order model, i.e. we want to get autocompletion for Person objects when we type
the person’s first or last name.

For this to work, we have to register an autocomplete for the Person model. The autocomplete tells autocomplete-
light how to render your autocompletion and what model fields to search in (like first_name, last_name, . . .).

When we have defined how a Person autocompletion should look like, we have to enable it in the Order form. This
is done by modifying the Order form so that autocomplete-light’s special form fields are used instead of the ones
built into Django. autocomplete-light provides a handy wrapper around Django’s modelforms which makes this a very
easy thing to do.

6.1.1 autocomplete_light.register() shortcut to generate and register Auto-
complete classes

Register an Autocomplete for your model in your_app/autocomplete_light_registry.py, it can look
like this:

import autocomplete_light.shortcuts as al
from models import Person

This will generate a PersonAutocomplete class.
al.register(Person,

Just like in ModelAdmin.search_fields.
search_fields=['^first_name', 'last_name'],
attrs={

This will set the input placeholder attribute:

17

django-autocomplete-light Documentation, Release 2.3.3

'placeholder': 'Other model name ?',
This will set the yourlabs.Autocomplete.minimumCharacters
options, the naming conversion is handled by jQuery.
'data-autocomplete-minimum-characters': 1,

},
This will set the data-widget-maximum-values attribute on the
widget container element, and will be set to
yourlabs.Widget.maximumValues (jQuery handles the naming
conversion).
widget_attrs={

'data-widget-maximum-values': 4,
Enable modern-style widget !
'class': 'modern-style',

},
)

Note: If using Django >= 1.7, you might as well do register() calls directly in your
AppConfig.ready() as demonstrated in the example app: autocomplete_light.example_apps.
app_config_without_registry_file.

AutocompleteView.get() can proxy PersonAutocomplete.autocomplete_html() because
PersonAutocomplete is registered. This means that openning /autocomplete/PersonAutocomplete/
will call AutocompleteView.get() which will in turn call PersonAutocomplete.
autocomplete_html().

widget HTML

widget JavaScript

AutocompleteView

autocomplete_html()

18 Chapter 6. Tutorial

django-autocomplete-light Documentation, Release 2.3.3

Also AutocompleteView.post() would proxy PersonAutocomplete.post() if it was defined. It could
be useful to build your own features like on-the-fly object creation using Javascript method overrides like the remote
autocomplete.

Warning: Note that this would make all Person public. Fine tuning security is explained later in this tutorial in
section Overriding the queryset of a model autocomplete to secure an Autocomplete.

autocomplete_light.register() generates an Autocomplete class, passing the extra keyword arguments
like AutocompleteModel.search_fields to the Python type() function. This means that extra keyword
arguments will be used as class attributes of the generated class. An equivalent version of the above code would be:

class PersonAutocomplete(autocomplete_light.AutocompleteModelBase):
search_fields = ['^first_name', 'last_name']
model = Person

autocomplete_light.register(PersonAutocomplete)

Note: If you wanted, you could override the default AutocompleteModelBase used by
autocomplete_light.register() to generate Autocomplete classes.

It could look like this (in your project’s urls.py):

autocomplete_light.registry.autocomplete_model_base = YourAutocompleteModelBase
autocomplete_light.autodiscover()

Refer to the Autocomplete classes documentation for details, it is the first chapter of the the reference documentation.

6.1.2 autocomplete_light.modelform_factory() shortcut to generate Mod-
elForms in the admin

First, ensure that scripts are installed in the admin base template.

Then, enabling autocompletes in the admin is as simple as overriding ModelAdmin.form in your_app/admin.
py. You can use the modelform_factory() shortcut as such:

class OrderAdmin(admin.ModelAdmin):
This will generate a ModelForm
form = autocomplete_light.modelform_factory(Order, fields='__all__')

admin.site.register(Order)

Refer to the Form, fields and widgets documentation for other ways of making forms, it is the second chapter of the
the reference documentation.

6.1.3 autocomplete_light.ModelForm to generate Autocomplete fields, the DRY
way

First, ensure that scripts are properly installed in your template.

Then, you can use autocomplete_light.ModelForm to replace automatic Select and SelectMultiple
widgets which renders <select> HTML inputs by autocompletion widgets:

6.1. Quick start: adding simple autocompletes 19

http://django.readthedocs.io/en/latest/ref/contrib/admin/index.html#django.contrib.admin.ModelAdmin.form
http://django.readthedocs.io/en/latest/ref/forms/widgets.html#django.forms.Select
http://django.readthedocs.io/en/latest/ref/forms/widgets.html#django.forms.SelectMultiple

django-autocomplete-light Documentation, Release 2.3.3

class OrderModelForm(autocomplete_light.ModelForm):
class Meta:

model = Order

Note that the first Autocomplete class registered for a model becomes the default Autocomplete for that model. If you
have registered several Autocomplete classes for a given model, you probably want to use a different Autocomplete
class depending on the form using Meta.autocomplete_names:

class OrderModelForm(autocomplete_light.ModelForm):
class Meta:

autocomplete_names = {'company': 'PublicCompanyAutocomplete'}
model = Order

autocomplete_light.ModelForm respects Meta.fields and Meta.exclude. However, you can
enable or disable autocomplete_light.ModelForm’s behaviour in the same fashion with Meta.
autocomplete_fields and Meta.autocomplete_exclude:

class OrderModelForm(autocomplete_light.ModelForm):
class Meta:

model = Order
only enable autocompletes on 'person' and 'product' fields
autocomplete_fields = ('person', 'product')

class PersonModelForm(autocomplete_light.ModelForm):
class Meta:

model = Order
do not make 'category' an autocomplete field
autocomplete_exclude = ('category',)

Also, it will automatically enable autocompletes on generic foreign keys and generic many to many relations if you
have at least one generic Autocomplete class register (typically an AutocompleteGenericBase).

For more documentation, continue reading the reference documentation.

20 Chapter 6. Tutorial

CHAPTER 7

Reference and design documentation

If you need anything more than just enabling autocompletes in the admin, then you should understand django-
autocomplete-light’s architecture. Because you can override any part of it.

The architecture is based on 3 main parts which you can override to build insanely creative features as many users
already did.

7.1 Autocomplete classes

Note: This chapter assumes that you have been through the entire Quick start: adding simple autocompletes.

7.1.1 Design documentation

Any class which implements AutocompleteInterface is guaranteed to work because it provides the methods
that are expected by the view which serves autocomplete contents from ajax, and the methods that are expected by the
form field for validation and by the form widget for rendering.

However, implementing those methods directly would result in duplicate code, hence AutocompleteBase. It
contains all necessary rendering logic but lacks any business-logic, which means that it is not connected to any data.

If you wanted to make an Autocomplete class that implements business-logic based on a python list, you would end
up with AutocompleteList.

As you need both business-logic and rendering logic for an Autocomplete class to be completely usable, you would
mix both AutocompleteBase and AutocompleteList resulting in AutocompleteListBase:

If you wanted to re-use your python list business logic with a template based rendering logic, you would mix
AutocompleteList and AutocompleteTemplate, resulting in AutocompleteListTemplate:

So far, you should understand that rendering and business logic are not coupled in autocomplete classes: you
can make your own business logic (ie. using redis, haystack . . .) and re-use an existing rendering logic (ie.
AutocompleteBase or AutocompleteTemplate) and vice-versa.

21

django-autocomplete-light Documentation, Release 2.3.3

For an exhaustive list of Autocomplete classes, refer to the Autocomplete API doc.

One last thing: Autocomplete classes should be registered so that the view can serve them and that form fields and
widget be able to re-use them. The registry itself is rather simple and filled with good intentions, refer to Registry API
documentation.

7.1.2 Examples

Create a basic list-backed autocomplete class

Class attributes are thread safe because register() always creates a class copy. Hence, registering a custom
Autocomplete class for your model in your_app/autocomplete_light_registry.py could look like this:

import autocomplete_light.shortcuts as al

class OsAutocomplete(al.AutocompleteListBase):
choices = ['Linux', 'BSD', 'Minix']

al.register(OsAutocomplete)

First, we imported autocomplete_light’s module. It should contain everything you need.

Then, we subclassed autocomplete_light.AutocompleteListBase, setting a list of OSes in the
choices attribute.

Finally, we registered the Autocomplete class. It will be registered with the class name by default.

Note: Another way of achieving the above using the register shortcut could be:

autocomplete_light.register(autocomplete_light.AutocompleteListBase,
name='OsAutocomplete', choices=['Linux', 'BSD', 'Minix'])

Using a template to render the autocomplete

You could use AutocompleteListTemplate instead of AutocompleteListBase:

import autocomplete_light.shortcuts as al

class OsAutocomplete(al.AutocompleteListTemplate):
choices = ['Linux', 'BSD', 'Minix']
autocomplete_template = 'your_autocomplete_box.html'

al.register(OsAutocomplete)

Inheriting from AutocompleteListTemplate instead of AutocompleteListBase like as show in the pre-
vious example enables two optionnal options:

• autocomplete_template which we have customized, if we hadn’t then AutocompleteTemplate.
choice_html() would have fallen back on the parent AutocompleteBase.choice_html(),

• choice_template which we haven’t set, so AutocompleteTemplate.choice_html() will fall
back on the parent AutocompleteBase.choice_html(),

See Design documentation for details.

22 Chapter 7. Reference and design documentation

django-autocomplete-light Documentation, Release 2.3.3

Note: Another way of achieving the above could be:

autocomplete_light.register(autocomplete_light.AutocompleteListTemplate,
name='OsAutocomplete', choices=['Linux', 'BSD', 'Minix'],
autocomplete_template='your_autocomplete_box.html')

Creating a basic model autocomplete class

Registering a custom Autocomplete class for your model in your_app/autocomplete_light_registry.py
can look like this:

from models import Person

class PersonAutocomplete(autocomplete_light.AutocompleteModelBase):
search_fields = ['^first_name', 'last_name']

autocomplete_light.register(Person, PersonAutocomplete)

In the same fashion, you could have used AutocompleteModelTemplate instead of
AutocompleteModelBase. You can see that the inheritance diagram follows the same pattern:

Note: An equivalent of this example would be:

autocomplete_light.register(Person,
search_fields=['^first_name', 'last_name'])

Overriding the queryset of a model autocomplete to secure an Autocomplete

You can override any method of the Autocomplete class. Filtering choices based on the request user could look like
this:

class PersonAutocomplete(autocomplete_light.AutocompleteModelBase):
search_fields = ['^first_name', 'last_name'])
model = Person

def choices_for_request(self):
if not self.request.user.is_staff:

self.choices = self.choices.filter(private=False)

return super(PersonAutocomplete, self).choices_for_request()

we have specified PersonAutocomplete.model, so we don't have to repeat
the model class as argument for register()
autocomplete_light.register(PersonAutocomplete)

It is very important to note here, that clean() will raise a ValidationError if a model is selected in a
ModelChoiceField or ModelMultipleChoiceField

Note: Use at your own discretion, as this can cause problems when a choice is no longer part of the queryset, just like
with django’s Select widget.

7.1. Autocomplete classes 23

django-autocomplete-light Documentation, Release 2.3.3

Registering the same Autocomplete class for several autocompletes

This code registers an autocomplete with name ContactAutocomplete:

autocomplete_light.register(ContactAutocomplete)

To register two autocompletes with the same class, pass in a name argument:

autocomplete_light.register(ContactAutocomplete, name='Person',
choices=Person.objects.filter(is_company=False))

autocomplete_light.register(ContactAutocomplete, name='Company',
choices=Person.objects.filter(is_company=True))

7.2 Form, fields and widgets

Note: This chapter assumes that you have been through Quick start: adding simple autocompletes and Autocomplete
classes.

7.2.1 Design documentation

This app provides optionnal helpers to make forms:

• autocomplete_light.modelform_factory which wraps around django’s modelform_factory but
uses the heroic autocomplete_light.ModelForm.

• autocomplete_light.ModelForm: the heroic ModelForm which ties all our loosely coupled tools to-
gether:

– SelectMultipleHelpTextRemovalMixin, which removes the “Hold down control or command
to select more than one” help text on autocomplete widgets (fixing Django ticket #9321),

– VirtualFieldHandlingMixin which enables support for generic foreign keys,

– GenericM2MRelatedObjectDescriptorHandlingMixin which enables support for generic
many to many, if django-genericm2m is installed,

– ModelFormMetaclass which enables FormfieldCallback to replace the default form field cre-
ator replacing <select> with autocompletes for relations and creates generic foreign key and generic many
to many fields.

You probably already know that Django has form-fields for validation and each form-field has a widget for rendering
logic.

autocomplete_light.FieldBase makes a form field field rely on an Autocomplete class for initial choices
and validation (hail DRY configuration !), it is used as a mixin to make some simple field classes:

• autocomplete_light.ChoiceField,

• autocomplete_light.MultipleChoiceField,

• autocomplete_light.ModelChoiceField,

• autocomplete_light.ModelMultipleChoiceField,

• autocomplete_light.GenericModelChoiceField, and

• autocomplete_light.GenericModelMultipleChoiceField.

24 Chapter 7. Reference and design documentation

https://code.djangoproject.com/ticket/9321

django-autocomplete-light Documentation, Release 2.3.3

In the very same fashion, autcomplete_light.WidgetBase renders a template which should contain:

• a hidden <select> field containing real field values,

• a visible <input> field which has the autocomplete,

• a deck which contains the list of selected values,

• add-another optionnal link, because add-another works outside the admin,

• a hidden choice template, which is copied when a choice is created on the fly (ie. with add-another).

It is used as a mixin to make some simple widget classes:

• autocomplete_light.ChoiceWidget,

• autocomplete_light.MultipleChoiceWidget,

• autocomplete_light.TextWidget.

7.2.2 Examples

This basic example demonstrates how to use an autocomplete form field in a form:

class YourForm(forms.Form):
os = autocomplete_light.ChoiceField('OsAutocomplete')

Using autocomplete_light.ModelForm

Consider such a model which have every kind of relations that are supported out of the box:

class FullModel(models.Model):
name = models.CharField(max_length=200)

oto = models.OneToOneField('self', related_name='reverse_oto')
fk = models.ForeignKey('self', related_name='reverse_fk')
mtm = models.ManyToManyField('self', related_name='reverse_mtm')

content_type = models.ForeignKey(ContentType)
object_id = models.PositiveIntegerField()
gfk = generic.GenericForeignKey("content_type", "object_id")

that's generic many to many as per django-generic-m2m
gmtm = RelatedObjectsDescriptor()

Assuming that you have registered an Autocomplete for FullModel and a generic Autocomplete, then
autocomplete_light.ModelForm will contain 5 autocompletion fields by default: oto, fk, mtm, gfk and gmtm.

class FullModelModelForm(autocomplete_light.ModelForm):
class Meta:

model = FullModel
add for django 1.6:
fields = '__all__'

autocomplete_light.ModelForm gives autocompletion super powers to django.forms.ModelForm. To
disable the fk input for example:

7.2. Form, fields and widgets 25

http://django.readthedocs.io/en/latest/topics/forms/modelforms.html#django.forms.ModelForm

django-autocomplete-light Documentation, Release 2.3.3

class FullModelModelForm(autocomplete_light.ModelForm):
class Meta:

model = FullModel
exclude = ['fk']

Or, to just get the default <select> widget for the fk field:

class FullModelModelForm(autocomplete_light.ModelForm):
class Meta:

model = FullModel
autocomplete_exclude = ['fk']

In the same fashion, you can use Meta.fields and Meta.autocomplete_fields. To the difference that they
all understand generic foreign key names and generic relation names in addition to regular model fields.

Not using autocomplete_light.ModelForm

Instead of using our autocomplete_light.ModelForm, you could create such a ModelForm using our mixins:

class YourModelForm(autocomplete_light.SelectMultipleHelpTextRemovalMixin,
autocomplete_light.VirtualFieldHandlingMixin,
autocomplete_light.GenericM2MRelatedObjectDescriptorHandlingMixin,
forms.ModelForm):

pass

This way, you get a fully working ModelForm which does not handle any field generation. You can use form fields
directly though, which is demonstrated in the next example.

Using form fields directly

You might want to use form fields directly for any reason:

• you don’t want to or can’t extend autocomplete_light.ModelForm,

• you want to override a field, ie. if you have several Autocomplete classes registered for a model or for generic
relations and you want to specify it,

• you want to override any option like placeholder, help_text and so on.

Considering the model of the above example, this is how you could do it:

class FullModelModelForm(autocomplete_light.ModelForm):
Demonstrate how to use a form field directly
oto = autocomplete_light.ModelChoiceField('FullModelAutocomplete')
fk = autocomplete_light.ModelChoiceField('FullModelAutocomplete')
m2m = autocomplete_light.ModelMultipleChoiceField('FullModelAutocomplete')
It will use the default generic Autocomplete class by default
gfk = autocomplete_light.GenericModelChoiceField()
gmtm = autocomplete_light.GenericModelMultipleChoiceField()

class Meta:
model = FullModel
django 1.6:
fields = '__all__'

As you see, it’s as easy as 1-2-3, but keep in mind that this can break DRY: Model field’s help_text and verbose_name
are lost when overriding the widget.

26 Chapter 7. Reference and design documentation

django-autocomplete-light Documentation, Release 2.3.3

Using your own form in a ModelAdmin

You can use this form in the admin too, it can look like this:

from django.contrib import admin

from forms import OrderForm
from models import Order

class OrderAdmin(admin.ModelAdmin):
form = OrderForm

admin.site.register(Order, OrderAdmin)

Note: Ok, this has nothing to do with django-autocomplete-light because it is plain Django, but still it
might be useful to someone.

7.3 Scripts: the javascript side of autocompletes

Note: This chapter assumes that you have been through Quick start: adding simple autocompletes and Autocomplete
classes and Form, fields and widgets.

7.3.1 Design documentation

Before installing your own autocomplete scripts, you should know about the humble provided scripts:

• autocomplete.js provides yourlabs.Autocomplete via the $.yourlabsAutocomplete()
jQuery extension: add an autocomplete box to a text input, it can be used on its own to create a navigation
autocomplete like facebook and all the cool kids out there.

• widget.js provides yourlabs.Widget via the $.yourlabsWidget() jQuery extension: combine an
text input with an autocomplete box with a django form field which is represented by a hidden <select>.

• addanother.js enables adding options to a <select> via a popup from outside the admin, code mostly
comes from Django admin BTW,

• remote.js provides yourlabs.RemoteAutocompleteWidget, which extends yourlabs.Widget
and overrides yourlabs.Widget.getValue to create choices on-the-fly.

• text_widget.js provides yourlabs.TextWidget, used to manage the value of a text input that has an
autocomplete box.

Why a new autocomplete script you might ask ? What makes this script unique is that it relies on the server to render
the contents of the autocomplete-box. This means that you can fully design it like you want, including new HTML
tags like , using template tags like {% url %}, and so on.

If you want to change something on the javascript side, chances are that you will be better off overriding a method like
yourlabs.RemoteAutocompleteWidget instead of installing your own script right away.

What you need to know is that:

• widgets don’t render any inline javascript: the have HTML attributes that will tell the scripts how to instanciate
objects with $.yourlabsWidget(), $.yourlabsTextWidget() and so on. This allows to support
dynamically inserted widgets ie. with a dynamic formsets inside or outside of django admin.

7.3. Scripts: the javascript side of autocompletes 27

django-autocomplete-light Documentation, Release 2.3.3

• the particular attribute that is watched for is data-bootstrap. If an HTML element with class
.autocomplete-light-widget is found or created with data-bootstrap="normal" then
widget.js will call $.yourlabsWidget.

• if you customize data-bootstrap, widget.js will not do anything and you are free to implement your
script, either by extending a provided a class, either using a third-party script, either completely from scratch.

7.3.2 Examples

django-autocomplete-light provides consistent JS plugins. A concept that you understand for one plugin is likely to be
appliable for others.

Using $.yourlabsAutocomplete to create a navigation autocomplete

If your website has a lot of data, it might be useful to add a search input somewhere in the design. For example, there is
a search input in Facebook’s header. You will also notice that the search input in Facebook provides an autocomplete
which allows to directly navigate to a particular object’s detail page. This allows a visitor to jump to a particular page
with very few effort.

Our autocomplete script is designed to support this kind of autocomplete. It can be enabled on an input field and query
the server for a rendered autocomplete with anything like images and nifty design. Just create a view that renders just
a list of links based on request.GET.q.

Then you can use it to make a global navigation autocomplete using autocomplete.js directly. It can look like
this:

// Make a javascript Autocomplete object and set it up
var autocomplete = $('#yourInput').yourlabsAutocomplete({

url: '{% url "your_autocomplete_url" %}',
});

So when the user clicks on a link of the autocomplete box which is generated by your view: it is like if he clicked on
a normal link.

You’ve learned that you can have a fully functional navigation autocomplete like on Facebook with just this:

$('#yourInput').yourlabsAutocomplete({
url: '{% url "your_autocomplete_url" %}',
choiceSelector: 'a',

}).input.bind('selectChoice', function(e, choice, autocomplete) {
window.location.href = choice.attr('href');

});

autocomplete.js doesn’t do anything but trigger selectChoice on the input when a choice is selected either
with mouse or keyboard, let’s enable some action:

Because the script doesn’t know what HTML the server returns, it is nice to tell it how to recognize choices in the
autocomplete box HTML:: This will allow to use the keyboard arrows up/down to navigate between choices.

Refer to Making a global navigation autocomplete for complete help on making a navigation autocomplete.

Overriding a JS option in Python

Javascript widget and autocomplete objects options can be overidden via HTML data attributes:

• yourlabs.Autocomplete will use any data-autocomplete-* attribute on the input tag,

28 Chapter 7. Reference and design documentation

django-autocomplete-light Documentation, Release 2.3.3

• yourlabs.Widget will use any data-widget-* attribute on the widget container.

Those can be set in Python either with register(), as Autocomplete class attributes or as widget attributes. See
next examples for details.

Per registered Autocomplete

These options can be set with the register() shortcut:

autocomplete_light.register(Person,
attrs={

'placeholder': 'foo',
'data-autocomplete-minimum-characters': 0

},
widget_attrs={'data-widget-maximum-values': 4}

)

Per Autocomplete class

Or equivalently on a Python Autocomplete class:

class YourAutocomplete(autocomplete_light.AutocompleteModelBase):
model = Person
attrs={

'placeholder': 'foo',
'data-autocomplete-minimum-characters': 0

},
widget_attrs={'data-widget-maximum-values': 4}

Per widget

Or via the Python widget class:

autocomplete_light.ChoiceWidget('FooAutocomplete',
attrs={

'placeholder': 'foo',
'data-autocomplete-minimum-characters': 0

}
widget_attrs={'data-widget-maximum-values': 4}

)

NOTE the difference of the option name here. It is attrs to match django and not attrs. Note that
Autocomplete.attrs might be renamed to Autocomplete.attrs before v2 hits RC.

Override autocomplete JS options in JS

The array passed to the plugin function will actually be used to $.extend the autocomplete instance, so you can override
any option, ie:

$('#yourInput').yourlabsAutocomplete({
url: '{% url "your_autocomplete_url" %}',
// Hide after 200ms of mouseout

7.3. Scripts: the javascript side of autocompletes 29

django-autocomplete-light Documentation, Release 2.3.3

hideAfter: 200,
// Choices are elements with data-url attribute in the autocomplete
choiceSelector: '[data-url]',
// Show the autocomplete after only 1 character in the input.
minimumCharacters: 1,
// Override the placeholder attribute in the input:
placeholder: '{% trans 'Type your search here ...' %}',
// Append the autocomplete HTML somewhere else:
appendAutocomplete: $('#yourElement'),
// Override zindex:
autocompleteZIndex: 1000,

});

Note: The pattern is the same for all plugins provided by django-autocomplete-light.

Override autocomplete JS methods

Overriding methods works the same, ie:

$('#yourInput').yourlabsAutocomplete({
url: '{% url "your_autocomplete_url" %}',
choiceSelector: '[data-url]',
getQuery: function() {

return this.input.val() + '&search_all=' + $('#searchAll').val();
},
hasChanged: function() {

return true; // disable cache
},

});

Note: The pattern is the same for all plugins provided by django-autocomplete-light.

Overload autocomplete JS methods

Use call to call a parent method. This example automatically selects the choice if there is only one:

$(document).ready(function() {
var autocomplete = $('#id_city_text').yourlabsAutocomplete();
autocomplete.show = function(html) {

yourlabs.Autocomplete.prototype.show.call(this, html)
var choices = this.box.find(this.choiceSelector);

if (choices.length == 1) {
this.input.trigger('selectChoice', [choices, this]);

}
}

});

30 Chapter 7. Reference and design documentation

https://developer.mozilla.org/en/docs/JavaScript/Reference/Global_Objects/Function/call

django-autocomplete-light Documentation, Release 2.3.3

Get an existing autocomplete object and chain autocompletes

You can use the jQuery plugin yourlabsAutocomplete() to get an existing autocomplete object. Which makes
chaining autocompletes with other form fields as easy as:

$('#country').change(function() {
$('#yourInput').yourlabsAutocomplete().data = {

'country': $(this).val();
}

});

Overriding widget JS methods

The widget js plugin will only bootstrap widgets which have data-bootstrap="normal". Which means that
you should first name your new bootstrapping method to ensure that the default behaviour doesn’t get in the way.

autocomplete_light.register(City,
widget_attrs={'data-widget-bootstrap': 'your-custom-bootstrap'})

Note: You could do this at various level, by setting the bootstrap argument on a widget instance, via
register() or directly on an autocomplete class. See Overriding JS options in Python for details.

Now, you can instanciate the widget yourself like this:

$(document).bind('yourlabsWidgetReady', function() {
$('.your.autocomplete-light-widget[data-bootstrap=your-custom-bootstrap]').live(

→˓'initialize', function() {
$(this).yourlabsWidget({

// Override options passed to $.yourlabsAutocomplete() from here
autocompleteOptions: {

url: '{% url "your_autocomplete_url" %}',
// Override any autocomplete option in this array if you want
choiceSelector: '[data-id]',

},
// Override some widget options, allow 3 choices:
maxValues: 3,
// or method:
getValue: function(choice) {

// This is the method that returns the value to use for the
// hidden select option based on the HTML of the selected
// choice.
//
// This is where you could make a non-async post request to
// this.autocomplete.url for example. The default is:
return choice.data('id')

},
})

});
});

You can use the remote autocomplete as an example.

Note: You could of course call $.yourlabsWidget() directly, but using the yourlabsWidgetReady event

7.3. Scripts: the javascript side of autocompletes 31

django-autocomplete-light Documentation, Release 2.3.3

takes advantage of the built-in DOMNodeInserted event: your widgets will also work with dynamically created wid-
gets (ie. admin inlines).

7.4 Voodoo black magic

This cookbook is a work in progress. Please report any error or things that could be explained better ! And make pull
requests heh . . .

7.4.1 High level Basics

Various cooking recipes your_app/autocomplete_light_registry.py:

This actually creates a thread safe subclass of AutocompleteModelBase.
autocomplete_light.register(SomeModel)

If NewModel.get_absolute_url or get_absolute_update_url is defined, this
will look more fancy
autocomplete_light.register(NewModel,

autocomplete_light.AutocompleteModelTemplate)

Extra **kwargs are used as class properties in the subclass.
autocomplete_light.register(SomeModel,

SomeModel is already registered, re-register with custom name
name='AutocompleteSomeModelNew',
Filter the queryset
choices=SomeModel.objects.filter(new=True))

It is possible to override javascript options from Python.
autocomplete_light.register(OtherModel,

attrs={
This will actually data-autocomplete-minimum-characters which
will set widget.autocomplete.minimumCharacters.
'data-autocomplete-minimum-characters': 0,
'placeholder': 'Other model name ?',

}
)

But you can make your subclass yourself and override methods.
class YourModelAutocomplete(autocomplete_light.AutocompleteModelTemplate):

template_name = 'your_app/your_special_choice_template.html'

attrs = {
'data-mininum-minimum-characters': 4,
'placeholder': 'choose your model',

}

widget_attrs = {
That will set widget.maximumValues, naming conversion is done by
jQuery.data()
'data-widget-maximum-values': 6,
'class': 'your-custom-class',

}

def choices_for_request(self):

32 Chapter 7. Reference and design documentation

django-autocomplete-light Documentation, Release 2.3.3

""" Return choices for a particular request """
self.choices = self.choices.exclude(extra=self.request.GET['extra'])
return super(YourModelAutocomplete, self).choices_for_request()

Just pass the class to register and it'll subclass it to be thread safe.
autocomplete_light.register(YourModel, YourModelAutocomplete)

This will subclass the subclass, using extra kwargs as class attributes.
autocomplete_light.register(YourModel, YourModelAutocomplete,

Again, registering another autocomplete for the same model, requires
registration under a different name
name='YourModelOtherAutocomplete',
Extra **kwargs passed to register have priority.
choice_template='your_app/other_template.html')

Various cooking recipes for your_app/forms.py:

Use as much registered autocompletes as possible.
SomeModelForm = autocomplete_light.modelform_factory(SomeModel,

exclude=('some_field'))

Same with a custom autocomplete_light.ModelForm
class CustomModelForm(autocomplete_light.ModelForm):

autocomplete_light.ModelForm will set up the fields for you
some_extra_field = forms.CharField()

class Meta:
model = SomeModel

Using form fields directly in any kind of form
class NonModelForm(forms.Form):

user = autocomplete_light.ModelChoiceField('UserAutocomplete')

cities = autocomplete_light.ModelMultipleChoiceField('CityAutocomplete',
widget=autocomplete_light.MultipleChoiceWidget('CityAutocomplete',

Those attributes have priority over the Autocomplete ones.
attrs={'data-autocomplete-minimum-characters': 0,

'placeholder': 'Choose 3 cities ...'},
widget_attrs={'data-widget-maximum-values': 3}))

tags = forms.TextField(widget=autocomplete_light.TextWidget('TagAutocomplete'))

7.4.2 Low level basics

This is something you probably won’t need in the mean time. But it can turn out to be useful so here it is.

Various cooking recipes for autocomplete.js, useful if you want to use it manually for example to make a
navigation autocomplete like facebook:

// Use default options, element id attribute and url options are required:
var autocomplete = $('#yourInput').yourlabsAutocomplete({

url: '{% url "your_autocomplete_url" %}'
});

// Because the jQuery plugin uses a registry, you can get the autocomplete
// instance again by calling yourlabsAutocomplete() again, and patch it:
$('#country').change(function() {

7.4. Voodoo black magic 33

django-autocomplete-light Documentation, Release 2.3.3

$('#yourInput').yourlabsAutocomplete().data = {
'country': $(this).val();

}
});
// And that's actually how to do chained autocompletes.

// The array passed to the plugin will actually be used to $.extend the
// autocomplete instance, so you can override any option:
$('#yourInput').yourlabsAutocomplete({

url: '{% url "your_autocomplete_url" %}',
// Hide after 200ms of mouseout
hideAfter: 200,
// Choices are elements with data-url attribute in the autocomplete
choiceSelector: '[data-url]',
// Show the autocomplete after only 1 character in the input.
minimumCharacters: 1,
// Override the placeholder attribute in the input:
placeholder: '{% trans 'Type your search here ...' %}',
// Append the autocomplete HTML somewhere else:
appendAutocomplete: $('#yourElement'),
// Override zindex:
autocompleteZIndex: 1000,

});

// Or any method:
$('#yourInput').yourlabsAutocomplete({

url: '{% url "your_autocomplete_url" %}',
choiceSelector: '[data-url]',
getQuery: function() {

return this.input.val() + '&search_all=' + $('#searchAll').val();
},
hasChanged: function() {

return true; // disable cache
},

});

// autocomplete.js doesn't do anything but trigger selectChoice when
// an option is selected, let's enable some action:
$('#yourInput').bind('selectChoice', function(e, choice, autocomplete) {

window.location.href = choice.attr('href');
});

// For a simple navigation autocomplete, it could look like:
$('#yourInput').yourlabsAutocomplete({

url: '{% url "your_autocomplete_url" %}',
choiceSelector: 'a',

}).input.bind('selectChoice', function(e, choice, autocomplete) {
window.location.href = choice.attr('href');

});

Using widget.js is pretty much the same:

$('#yourWidget').yourlabsWidget({
autocompleteOptions: {

url: '{% url "your_autocomplete_url" %}',
// Override any autocomplete option in this array if you want
choiceSelector: '[data-id]',

},

34 Chapter 7. Reference and design documentation

django-autocomplete-light Documentation, Release 2.3.3

// Override some widget options, allow 3 choices:
maximumValues: 3,
// or method:
getValue: function(choice) {

return choice.data('id'),
},

});

// Supporting dynamically added widgets (ie. inlines) is
// possible by using "solid initialization":
$(document).bind('yourlabsWidgetReady', function() {

$('.your.autocomplete-light-widget[data-bootstrap=your-custom-bootstrap]').live(
→˓'initialize', function() {

$(this).yourlabsWidget({
// your options ...

})
});

});
// This method takes advantage of the default DOMNodeInserted observer
// served by widget.js

There are some differences with autocomplete.js:

• widget expect a certain HTML structure by default,

• widget options can be overridden from HTML too,

• widget can be instanciated automatically via the default bootstrap

Hence the widget.js HTML cookbook:

<!--
- class=autocomplete-light-widget: get picked up by widget.js defaults,
- any data-widget-* attribute will override yourlabs.Widget js option,
- data-widget-bootstrap=normal: Rely on automatic bootstrap because

if don't need to override any method, but you could change
that and make your own bootstrap, enabling you to make
chained autocomplete, create options, whatever ...

- data-widget-maximum-values: override a widget option maximumValues, note
that the naming conversion is done by jQuery.data().

-->
<span

class="autocomplete-light-widget"
data-widget-bootstrap="normal"
data-widget-maximum-values="3"

>

<!--
Expected structure: have an input, it can set override default
autocomplete options with data-autocomplete-* attributes, naming
conversion is done by jQuery.data().
-->
<input

type="text"
data-autocomplete-minimum-characters="0"
data-autocomplete-url="/foo"

/>

<!--

7.4. Voodoo black magic 35

django-autocomplete-light Documentation, Release 2.3.3

Default expected structure: have a .deck element to append selected
choices too:
-->

<!-- Suppose a choice was already selected: -->
Option #1234

<!--
Default expected structure: have a multiple select.value-select:
-->
<select style="display:none" class="value-select" name="your_input" multiple=

→˓"multiple">
<!-- If option 1234 was already selected: -->
<option value="1234">Option #1234</option>

</select>

<!--
Default expected structure: a .remove element that will be appended to
choices, and that will de-select them on click:
-->
Remove this choice

<!--
Finally, supporting new options to be created directly in the select in
javascript (ie. add another) is possible with a .choice-template. Of
course, you can't take this very far, since all you have is the new
option's value and html.
-->

Read everything about the registry and widgets.

36 Chapter 7. Reference and design documentation

CHAPTER 8

Topics

Using just the concepts you’ve learned in the reference, here are some of the things you can do.

8.1 Styling autocompletes

A complete autocomplete widget has three parts you can style individually:

• the autocomplete widget, rendered on the form,

• the autocomplete box, fetched by ajax,

• choices presented by both the autocomplete box and widget deck.

Note that a choice HTML element is copied from the autocomplete box into the deck uppon selection. It is then
appended a “remove” element, that will remove the choice uppon click.

8.1.1 Styling choices

By default, choices are rendered by the choice_html() method. The result of this method will be used in the
autocomplete box as well as in the widget deck. There are three easy ways to customize it:

• overriding AutocompleteBase.choice_html_format,

• overriding AutocompleteBase.choice_html(),

• or even with a template specified in AutocompleteTemplate.choice_template

Overriding AutocompleteBase.choice_html_format

The easiest and most limited way to change how a choice is rendered is to override the AutocompleteBase.
choice_html_format attribute.

For example:

37

django-autocomplete-light Documentation, Release 2.3.3

class OsAutocomplete(autocomplete_light.AutocompleteListBase):
choices = ['Linux', 'BSD', 'Minix']
choice_html_format = u'%s'

This will add the class os to choices.

Overriding AutocompleteBase.choice_html()

Overriding AutocompleteBase.choice_html() enables changing the way choices are rendered.

For example:

class PersonAutocomplete(autocomplete_light.AutocompleteModelBase):
choice_html_format = u'''

 %s
'''

def choice_html(self, choice):
return self.choice_html_format % (self.choice_value(choice),

choice.profile_image.url, self.choice_label(choice))

Overriding AutocompleteTemplate.choice_template

Perhaps the coolest way to style choices is to use a template. Just set AutocompleteTemplate.
choice_template. It is used by AutocompleteTemplate.choice_html:

class PersonAutocomplete(autocomplete_light.AutocompleteModelTemplate):
choice_template = 'person_choice.html'

Now, all you have to do is create a person_choice.html template. Consider this elaborated example with image
and links to the detail page and admin change form:

{% load i18n %}
{% load thumbnail %}

{{ choice.first_name }} {{ choice.last_name }}

{% trans 'Edit person' %}

{% if choice.company %}

{{ choice.company }}

{% endif %}

First, the template loads the i18n template tags library which enables the {% trans %} template tag, useful for
internationalization.

38 Chapter 8. Topics

django-autocomplete-light Documentation, Release 2.3.3

Then, it defines the tag, this element is valid anywhere even if your autocomplete widget is rendered in a
<table>. However, this element has the block class which makes it display: block for space.
Also, it adds the person class to enable specific CSS stylings. Finally it defines the data-value attribute. Note
that the ‘‘data-value‘‘ is critical because it is what tells autocomplete.js that this element is a choice, and it
also tells widget.js that the value is {{ choice.pk }} (which will be rendered before widget.js gets its
hands on it of course).

8.1.2 Styling autocomplete boxes

By default, the autocomplete box is rendered by the autocomplete_html() method. The result of this method
will be used to render the autocomplete box. There are many ways to customize it:

• overriding AutocompleteBase.autocomplete_html_format,

• overriding AutocompleteBase.autocomplete_html(),

• or even with a template specified in AutocompleteTemplate.autocomplete_template if using
AutocompleteTemplate for rendering logic.

Overriding AutocompleteBase.autocomplete_html_format

The easiest and most limited way to change how a autocomplete is rendered is to override the AutocompleteBase.
autocomplete_html_format attribute.

For example:

class OsAutocomplete(autocomplete_light.AutocompleteListBase):
autocompletes = ['Linux', 'BSD', 'Minix']
autocomplete_html_format = u'%s'

This will add the autocomplete-os class to the autocomplete box.

Overriding AutocompleteBase.autocomplete_html

Overriding AutocompleteBase.autocomplete_html() enables changing the way autocompletes are ren-
dered.

For example:

class PersonAutocomplete(autocomplete_light.AutocompleteModelBase):
autocomplete_html_format = u'''

%s Persons matching your query
%s

'''

def autocomplete_html(self):
html = ''.join(

[self.choice_html(c) for c in self.choices_for_request()])

if not html:
html = self.empty_html_format % _('no matches found').capitalize()

count = len(self.choices_for_request())
return self.autocomplete_html_format % (count, html)

8.1. Styling autocompletes 39

django-autocomplete-light Documentation, Release 2.3.3

This will add a choice counter at the top of the autocomplete.

Overriding AutocompleteTemplate.autocomplete_template

Perhaps the coolest way to style an autocomplete box is to use a template. Just set AutocompleteTemplate.
autocomplete_template. It is used by AutocompleteTemplate.autocomplete_html:

class PersonAutocomplete(autocomplete_light.AutocompleteModelTemplate):
autocomplete_template = 'person_autocomplete.html'

Now, all you have to do is create a person_autocomplete.html template. Consider this elaborated example
with user-friendly translated messages:

{% load i18n %}
{% load autocomplete_light_tags %}

{% if choices %}
<h2>{% trans 'Please select a person' %}</h2>
{% for choice in choices %}

{{ choice|autocomplete_light_choice_html:autocomplete }}
{% endfor %}

{% else %}
<h2>{% trans 'No matching person found' %}</h2>
<p>

{% blocktrans %}Sometimes, persons have not filled their name,
maybe try to search based on email addresses ?{% endblocktrans %}

</p>
{% endif %}

First, it loads Django’s i18n template tags for translation. Then, it loads autocomplete-light’s tags.

If there are any choices, it will display the list of choices, rendered by choice_html()
through the autocomplete_light_choice_html template filter as such: {{
choice|autocomplete_light_choice_html:autocomplete }}.

If no choice is found, then it will display a user friendly suggestion.

8.1.3 Styling widgets

Widgets are rendered by the render() method. By default, it renders autocomplete_light/widget.html. While you
can override the widget template globally, there are two ways to override the widget template name on a per-case basis:

• WidgetBase.widget_template,

• AutocompleteBase.widget_template,

Using another template instead of a global override allows to extend the default widget template and override only the
parts you need.

If you’re not sure what is in a widget template, please review part 2 of reference documentation about widget templates.

Also, note that the widget is styled with CSS, you can override or extend any definition of autocomplete_light/
style.css.

40 Chapter 8. Topics

django-autocomplete-light Documentation, Release 2.3.3

AutocompleteModelTemplate

By default, AutocompleteModelTemplate sets choice_template to autocomplete_light/
model_template/choice.html. It adds a “view absolute url” link as well as an “update form url” link based on
YourModel.get_absolute_url() and YourModel.get_absolute_update_url() with such a tem-
plate:

{% load i18n l10n %}
{% load static %}

{% spaceless %}

{{ choice }}
{% with choice.get_absolute_url as url %}

{% if url %}
→
{% endif %}

{% endwith %}

{% with choice.get_absolute_update_url as url %}
{% if url %}

{% endif %}

{% endwith %}

{% endspaceless %}

It does not play well in all projects, so it was not set as default. But you can inherit from it:

class YourAutocomplete(autocomplete_light.AutocompleteModelTemplate):
model = YourModel

autocomplete_light.register(YourAutocomplete)

Or let the register() shortcut use it:

autocomplete_light.register(YourModel,
autocomplete_light.AutocompleteModelTemplate)

Or set it as default with AutocompleteRegistry.autocomplete_model_base and used it as such:

autocomplete_light.register(YourModel)

8.2 Making a global navigation autocomplete

This guide demonstrates how to make a global navigation autocomplete like on Facebook.

Note that there are many ways to implement such a feature, we’re just describing a simple one.

8.2.1 A simple view

As we’re just going to use autocomplete.js for this, we only need a view to render the autocomplete. For example:

8.2. Making a global navigation autocomplete 41

django-autocomplete-light Documentation, Release 2.3.3

from django import shortcuts
from django.db.models import Q

from autocomplete_light.example_apps.music.models import Artist, Genre

def navigation_autocomplete(request,
template_name='navigation_autocomplete/autocomplete.html'):

q = request.GET.get('q', '')

queries = {}

queries['artists'] = Artist.objects.filter(
Q(name__icontains=q) |
Q(genre__name__icontains=q)

).distinct()[:6]

queries['genres'] = Genre.objects.filter(name__icontains=q)[:6]

return shortcuts.render(request, template_name, queries)

Along with a trivial template for navigation_autocomplete/autocomplete.html would work:

Artists
{% for artist in artists %}
{{ artist }}
{% endfor %}

Genres
{% for genre in genre %}
{{ genre }}
{% endfor %}

8.2.2 A basic autocomplete configuration

That’s a pretty basic usage of autocomplete.js, concepts are detailed in Using $.yourlabsAutocomplete to create a
navigation autocomplete, this is what it looks like:

// Change #yourInput by a selector that matches the input you want to use
// for the navigation autocomplete.
$('#yourInput').yourlabsAutocomplete({

// Url of the view you just created
url: '{% url "your_autocomplete_url" %}',

// With keyboard, we should iterate around <a> tags in the autocomplete
choiceSelector: 'a',

}).input.bind('selectChoice', function(e, choice, autocomplete) {
// When a choice is selected, open it. Note: this is not needed for
// mouse click on the links of course, but this is necessary for keyboard
// selection.
window.location.href = choice.attr('href');

});

42 Chapter 8. Topics

django-autocomplete-light Documentation, Release 2.3.3

8.3 Dependencies between autocompletes

This means that the selected value in an autocomplete widget is used to filter choices from another autocomplete
widget.

This page drives through the example in autocomplete_light/example_apps/dependant_autocomplete/.

8.3.1 Specifications

Consider such a model:

from django.db import models

class Dummy(models.Model):
parent = models.ForeignKey('self', null=True, blank=True)
country = models.ForeignKey('cities_light.country')
region = models.ForeignKey('cities_light.region')

def __unicode__(self):
return '%s %s' % (self.country, self.region)

And we want two autocompletes in the form, and make the “region” autocomplete to be filtered using the value of the
“country” autocomplete.

8.3.2 Autocompletes

Register an Autocomplete for Region that is able to use ‘country_id’ GET parameter to filter choices:

import autocomplete_light.shortcuts as autocomplete_light
from cities_light.models import Country, Region

autocomplete_light.register(Country, search_fields=('name', 'name_ascii',),
autocomplete_js_attributes={'placeholder': 'country name ..'})

class AutocompleteRegion(autocomplete_light.AutocompleteModelBase):
autocomplete_js_attributes={'placeholder': 'region name ..'}

def choices_for_request(self):
q = self.request.GET.get('q', '')
country_id = self.request.GET.get('country_id', None)

choices = self.choices.all()
if q:

choices = choices.filter(name_ascii__icontains=q)
if country_id:

choices = choices.filter(country_id=country_id)

return self.order_choices(choices)[0:self.limit_choices]

autocomplete_light.register(Region, AutocompleteRegion)

8.3. Dependencies between autocompletes 43

django-autocomplete-light Documentation, Release 2.3.3

8.3.3 Javascript

Actually, a normal modelform is sufficient. But it was decided to use Form.Media to load the extra javascript:

import autocomplete_light.shortcuts as autocomplete_light
from django import forms

from .models import Dummy

class DummyForm(autocomplete_light.ModelForm):
class Media:

"""
We're currently using Media here, but that forced to move the
javascript from the footer to the extrahead block ...

So that example might change when this situation annoys someone a lot.
"""
js = ('dependant_autocomplete.js',)

class Meta:
model = Dummy
exclude = []

That’s the piece of javascript that ties the two autocompletes:

$(document).ready(function() {
$('body').on('change', '.autocomplete-light-widget select[name$=country]',

→˓function() {
var countrySelectElement = $(this);
var regionSelectElement = $('#' + $(this).attr('id').replace('country',

→˓'region'));
var regionWidgetElement = regionSelectElement.parents('.autocomplete-light-

→˓widget');

// When the country select changes
value = $(this).val();

if (value) {
// If value is contains something, add it to autocomplete.data
regionWidgetElement.yourlabsWidget().autocomplete.data = {

'country_id': value[0],
};

} else {
// If value is empty, empty autocomplete.data
regionWidgetElement.yourlabsWidget().autocomplete.data = {}

}

// example debug statements, that does not replace using breakbpoints and a
→˓proper debugger but can hel

// console.log($(this), 'changed to', value);
// console.log(regionWidgetElement, 'data is', regionWidgetElement.

→˓yourlabsWidget().autocomplete.data)
})

});

44 Chapter 8. Topics

django-autocomplete-light Documentation, Release 2.3.3

8.3.4 Conclusion

Again, there are many ways to acheive this. It’s just a working example you can test in the demo, you may copy it and
adapt it to your needs.

8.4 Generic relations

First, you need to register an autocomplete class for autocompletes on generic relations.

The easiest is to inherit from AutocompleteGenericBase or AutocompleteGenericTemplate. The main
logic is contained in AutocompleteGeneric which is extended by both the Base and Template versions.

Generic relation support comes in two flavors:

• for django’s generic foreign keys,

• and for django-generic-m2m’s generic many to many.

autocomplete_light.ModelForm will setup the fields:

• autocomplete_light.GenericModelChoiceField, and

• autocomplete_light.GenericModelMultipleChoiceField.

Those fields will use the default generic autocomplete class, which is the last one you register as generic. If you want
to use several generic autocomplete classes, then you should setup the fields yourself to specify the autocomplete name
as such:

class YourModelForm(autocomplete_light.ModelForm):
if your GenericForeignKey name is "generic_fk":
generic_fk = autocomplete_light.GenericModelChoiceField('YourAutocomplete1')

if your RelatedObjectsDescriptor is "generic_m2m":
generic_m2m = autocomplete_light.GenericModelMultipleChoiceField(

→˓'YourAutocomplete2')

But please note that you will loose some DRY by doing that, as stated in the faq.

8.4.1 Example using AutocompleteGenericBase

This example demonstrates how to setup a generic autocomplete with 4 models:

class AutocompleteTaggableItems(autocomplete_light.AutocompleteGenericBase):
choices = (

User.objects.all(),
Group.objects.all(),
City.objects.all(),
Country.objects.all(),

)

search_fields = (
('username', 'email'),
('name',),
('search_names',),
('name_ascii',),

)

8.4. Generic relations 45

django-autocomplete-light Documentation, Release 2.3.3

autocomplete_light.register(AutocompleteTaggableItems)

8.5 When things go wrong

There is a convenience view to visualize the registry, login as staff, and open the autocomplete url, for example:
/autocomplete_light/.

Ensure that:

• jQuery is loaded,

• autocomplete_light/static.html is included once, it should load autocomplete.js, widget.
js and style.css,

• your form uses autocomplete_light widgets,

• your channels are properly defined see /autocomplete/ if you included autocomplete_light.urls
with prefix /autocomplete/.

If you don’t know how to debug, you should learn to use:

Firebug javascript debugger Open the script tab, select a script, click on the left of the code to place a breakpoint

Ipdb python debugger Install ipdb with pip, and place in your python code: import ipdb; ipdb.set_trace()

If you are able to do that, then you are a professional, enjoy autocomplete_light !!!

If you need help, open an issue on the github issues page.

But make sure you’ve read how to report bugs effectively and how to ask smart questions.

Also, don’t hesitate to do pull requests !

46 Chapter 8. Topics

https://github.com/yourlabs/django-autocomplete-light/issues
http://www.chiark.greenend.org.uk/~sgtatham/bugs.html
http://www.catb.org/~esr/faqs/smart-questions.html

CHAPTER 9

FAQ

9.1 Can’t see admin add-another + button when overriding a
ModelChoiceField

It’s common for users to report that the +/add-another button disappears when using a ModelForm with an overriden
ModelChoiceField. This is actually a Django issue.

As a workaround, 2.0.6 allows using Autocomplete.add_another_url_name in the admin, ie.:

autocomplete_light.register(YourModel, add_another_url_name='admin:yourapp_yourmodel_
→˓add')

While using Add another popup outside the admin has been supported for years, support for using it as a workaround
in Django admin is currently experimental. You can obviously imagine the problem if such an Autocomplete is used
for a user which has no access to the admin: the plus button will fail.

Your input is very welcome on this matter.

9.2 RemovedInDjango18Warning: Creating a ModelForm without ei-
ther the ‘fields’ attribute or the ‘exclude’ attribute is deprecated -
form YourForm needs updating

It’s very common for users who are not actively following Django 1.7 development and Django security matters (even
though they should!) to report the following warning as a problem with django-autocomplete-light:

autocomplete_light/forms.py:266: RemovedInDjango18Warning: Creating a ModelForm
→˓without either the 'fields' attribute or the 'exclude' attribute is deprecated -
→˓form YourForm needs updating

47

http://stackoverflow.com/questions/18602563/django-modelchoicefield-has-no-plus-button

django-autocomplete-light Documentation, Release 2.3.3

This is a new security feature from Django, and has nothing to do with django-autocomplete-light. As the
message clearly states, it is deprecated to create a ModelForm without either the ‘fields’ attribute or the ‘exclude’
attribute.

Solution: pass fields = '__all__'.

See Django documentation on “Selecting the fields to use” for details.

9.3 How to run tests

You should not try to test autocomplete_light from your own project because tests depend on example apps
to be present in INSTALLED_APPS. You may use the provided test_project which is prepared to run all testst.

Install a version from git, ie:

pip install -e git+https://github.com/yourlabs/django-autocomplete-light.git
→˓#egg=autocomplete_light

From there you have two choices:

• either go in env/src/autocomplete_light/test_project and run ./manage.py test
autocomplete_light,

• either go in env/src/autocomplete_light/ and run tox after installing it from pip.

If you’re trying to run a buildbot then you can use test.sh and use that buildbot configuration to enable CI on the
28 supported configurations:

def make_build(python, django, genericm2m, taggit):
name = 'py%s-dj%s' % (python, django)

if genericm2m != '0':
name += '-genericm2m'

if taggit != '0':
name += '-taggit'

slavenames = ['example-slave']
if python == '2.7':

slavenames.append('gina')

factory = BuildFactory()
check out the source
factory.addStep(Git(repourl='https://github.com/yourlabs/django-autocomplete-

→˓light.git', mode='incremental'))
run the tests (note that this will require that 'trial' is installed)
factory.addStep(ShellCommand(command=["./test.sh"], timeout=3600))

c['builders'].append(
BuilderConfig(name=name,

slavenames=slavenames,
factory=factory,
env={

'DJANGO_VERSION': django,
'PYTHON_VERSION': python,
'DJANGO_GENERIC_M2M': genericm2m,
'DJANGO_TAGGIT': taggit,

}
)

48 Chapter 9. FAQ

https://docs.djangoproject.com/en/dev/topics/forms/modelforms/#selecting-the-fields-to-use

django-autocomplete-light Documentation, Release 2.3.3

)

c['schedulers'].append(SingleBranchScheduler(
name="all-%s" % name,
change_filter=filter.ChangeFilter(branch='v2'),
treeStableTimer=None,
builderNames=[name]))

c['schedulers'].append(ForceScheduler(
name="force-%s" % name,
builderNames=[name]))

c['builders'] = []
djangos = ['1.4', '1.5', '1.6']
pythons = ['2.7', '3.3']

for python in pythons:
for django in djangos:

if python == '3.3' and django == '1.4':
continue

for genericm2m in ['0','1']:
for taggit in ['0','1']:

make_build(python, django, genericm2m, taggit)

9.4 Why not use Widget.Media ?

In the early versions (0.1) of django-autocomplete-light, we had widgets defining the Media class like this:

class AutocompleteWidget(forms.SelectMultiple):
class Media:

js = ('autocomplete_light/autocomplete.js',)

This caused a problem if you wanted to load jQuery and autocomplete.js globally anyway and anywhere in the admin
to have a global navigation autocomplete: it would load the scripts twice.

Also, this didn’t work well with django-compressor and other cool ways of deploying the JS.

So, in the next version, I added a dependency management system. Which sucked and was removed right away to
finally keep it simple and stupid as we have it today.

9.5 Model field’s help_text and verbose_name are lost when over-
riding the widget

This has nothing to do with django-autocomplete-light, but still it’s a FAQ so here goes.

When Django’s ModelForm creates a form field for a model field, it copies models.Field.verbose_name to
forms.Field.label and models.Field.help_text to forms.Field.help_text, as uses models.
Field.blank to create forms.Field.required.

For example:

9.4. Why not use Widget.Media ? 49

http://django.readthedocs.io/en/latest/ref/models/fields.html#django.db.models.Field.verbose_name
http://django.readthedocs.io/en/latest/ref/forms/fields.html#django.forms.Field.label
http://django.readthedocs.io/en/latest/ref/models/fields.html#django.db.models.Field.help_text
http://django.readthedocs.io/en/latest/ref/forms/fields.html#django.forms.Field.help_text
http://django.readthedocs.io/en/latest/ref/models/fields.html#django.db.models.Field.blank
http://django.readthedocs.io/en/latest/ref/models/fields.html#django.db.models.Field.blank
http://django.readthedocs.io/en/latest/ref/forms/fields.html#django.forms.Field.required

django-autocomplete-light Documentation, Release 2.3.3

class Person(models.Model):
name = models.CharField(

max_length=100,
blank=True,
verbose_name='Person name',
help_text='Please fill in the complete person name'

)

class PersonForm(forms.ModelForm):
class Meta:

model = Person

Thanks to Django’s DRY system, this is equivalent to:

class PersonForm(forms.ModelForm):
name = forms.CharField(

max_length=100,
required=False,
label='Person name',
help_text='Please fill in the complete person name'

)

class Meta:
model = Person

But you will loose that logic as soon as you decide to override Django’s generated form field with your own. So if you
do this:

class PersonForm(forms.ModelForm):
name = forms.CharField(widget=YourWidget)

class Meta:
model = Person

Then you loose Django’s DRY system, because you instanciate the name form field, so Django leaves it as is.

If you want to override the widget of a form field and you don’t want to override the form field, then you should refer
to Django’s documentation on overriding the default fields which means you should use Meta.widgets, ie.:

class PersonForm(forms.ModelForm):
class Meta:

model = Person
widgets = {'name': YourWidget}

Again, this has nothing to do with django-autocomplete-light.

9.6 Fields bound on values which are not in the queryset anymore
raise a ValidationError

This is not specific to django-autocomplete-light, but still it’s a FAQ so here goes.

Django specifies in its unit tests that a ModelChoiceField and ModelMultipleChoiceField should raise
a ValidationError if a value is not part of the queryset passed to the field constructor.

This is the relevant part of Django’s specification:

50 Chapter 9. FAQ

http://docs.djangoproject.com/topics/forms/modelforms.html#overriding-the-default-fields
https://github.com/django/django/blob/16d73d7416a7902703ee8022f093667f7ac9ef5b/tests/model_forms/tests.py#L1251

django-autocomplete-light Documentation, Release 2.3.3

Delete a Category object *after* the ModelChoiceField has already been
instantiated. This proves clean() checks the database during clean() rather
than caching it at time of instantiation.
Category.objects.get(url='5th').delete()
with self.assertRaises(ValidationError):

f.clean(c5.id)

[...]

Delete a Category object *after* the ModelMultipleChoiceField has already been
instantiated. This proves clean() checks the database during clean() rather
than caching it at time of instantiation.
Category.objects.get(url='6th').delete()
with self.assertRaises(ValidationError):

f.clean([c6.id])

django-autocomplete-light behaves exactly the same way. If an item is removed from the queryset, then its value will
be dropped from the field values on display of the form. Trying to save that value again will raise a ValidationError
will be raised, just like if the item wasn’t there at all.

But don’t take my word for it, try the security_test app of the test_project, it provides:

• an admin to control which items are in and out of the queryset,

• an update view with a django select

• another update view with an autocomplete instead

9.7 How to override a JS method ?

Refer to Override autocomplete JS methods.

9.8 How to work around Django bug #9321: Hold down “Control” . . .
?

Just use the autocomplete_light.ModelForm or inherit from both
SelectMultipleHelpTextRemovalMixin and django.forms.ModelForm.

9.9 How to report a bug effectively ?

Read How to Report Bugs Effectively and open an issue on django-autocomplete-light’s issue tracker on GitHub.

9.10 How to ask for help ?

The best way to ask for help is:

• fork the repo,

• add a simple way to reproduce your problem in a new app of test_project, try to keep it minimal,

• open an issue on github and mention your fork.

9.7. How to override a JS method ? 51

http://django.readthedocs.io/en/latest/topics/forms/modelforms.html#django.forms.ModelForm
http://www.chiark.greenend.org.uk/~sgtatham/bugs.html
https://github.com/yourlabs/django-autocomplete-light/issues

django-autocomplete-light Documentation, Release 2.3.3

Really, it takes quite some time for me to clean pasted code and put up an example app it would be really cool if you
could help me with that !

If you don’t want to do the fork and the reproduce case, then you should better ask on StackOverflow and you might
be lucky (just tag your question with django-autocomplete-light to ensure that I find it).

52 Chapter 9. FAQ

CHAPTER 10

API: find hidden gems

10.1 Registry API

class autocomplete_light.registry.AutocompleteRegistry(autocomplete_model_base=None)
AutocompleteRegistry is a dict of AutocompleteName: AutocompleteClass with some shortcuts to
handle a registry of autocompletes.

autocomplete_model_base
The default model autocomplete class to use when registering a Model without Autocomplete class. De-
fault is AutocompleteModelBase. You can override it just before calling autodiscover() in urls.py as
such:

import autocomplete_light.shortcuts as al
al.registry.autocomplete_model_base = al.AutocompleteModelTemplate
al.autodiscover()

You can pass a custom base autocomplete which will be set to autocomplete_model_base when instan-
ciating an AutocompleteRegistry.

autocomplete_for_generic()
Return the default generic autocomplete.

autocomplete_for_model(model)
Return the default autocomplete class for a given model or None.

classmethod extract_args(*args)
Takes any arguments like a model and an autocomplete, or just one of those, in any order, and return a
model and autocomplete.

register(*args, **kwargs)
Register an autocomplete.

Two unordered arguments are accepted, at least one should be passed:

• a model if not a generic autocomplete,

• an autocomplete class if necessary, else one will be generated.

53

django-autocomplete-light Documentation, Release 2.3.3

‘name’ is also an acceptable keyword argument, that can be used to override the default autocomplete
name which is the class name by default, which could cause name conflicts in some rare cases.

In addition, keyword arguments will be set as class attributes.

For thread safety reasons, a copy of the autocomplete class is stored in the registry.

unregister(name)
Unregister a autocomplete given a name.

autocomplete_light.registry.register(*args, **kwargs)
Proxy method AutocompleteRegistry.register() of the registry module level instance.

autocomplete_light.registry.autodiscover()
Check all apps in INSTALLED_APPS for stuff related to autocomplete_light.

For each app, autodiscover imports app.autocomplete_light_registry if possing, resulting in exe-
cution of register() statements in that module, filling up registry.

Consider a standard app called cities_light with such a structure:

cities_light/
__init__.py
models.py
urls.py
views.py
autocomplete_light_registry.py

Where autocomplete_light_registry.py contains something like:

from models import City, Country
import autocomplete_light.shortcuts as al
al.register(City)
al.register(Country)

When autodiscover() imports cities_light.autocomplete_light_registry,
both CityAutocomplete and CountryAutocomplete will be registered. See
AutocompleteRegistry.register() for details on how these autocomplete classes are gener-
ated.

10.2 Autocomplete class API

10.2.1 AutocompleteInterface

class autocomplete_light.autocomplete.base.AutocompleteInterface(request=None,
val-
ues=None)

An autocomplete proposes “choices”. A choice has a “value”. When the user selects a “choice”, then it is
converted to a “value”.

AutocompleteInterface is the minimum to implement in a custom Autocomplete class usable by the widget and
the view. It has two attributes:

values
A list of values which validate_values() and choices_for_values() should use.

request
A request object which autocomplete_html() should use.

54 Chapter 10. API: find hidden gems

django-autocomplete-light Documentation, Release 2.3.3

It is recommended that you inherit from AutocompleteBase instead when making your own classes because
it has taken some design decisions favorising a DRY implementation of AutocompleteInterface.

Instanciate an Autocomplete with a given request and values arguments. values will be casted to list if
necessary and both will be assigned to instance attributes request and values respectively.

autocomplete_html()
Return the HTML autocomplete that should be displayed under the text input. request can be used, if
set.

choices_for_values()
Return the list of choices corresponding to values.

get_absolute_url()
Return the absolute url for this autocomplete, using autocomplete_light_autocomplete url.

validate_values()
Return True if values are all valid.

10.2.2 Rendering logic Autocomplete mixins

AutocompleteBase

class autocomplete_light.autocomplete.base.AutocompleteBase(request=None, val-
ues=None)

A basic implementation of AutocompleteInterface that renders HTML and should fit most cases. It only needs
overload of choices_for_request() and choices_for_values() which is the business-logic.

choice_html_format
HTML string used to format a python choice in HTML by choice_html(). It is formated with two po-
sitionnal parameters: the value and the html representation, respectively generated by choice_value()
and choice_label(). Default is:

%s

empty_html_format
HTML string used to format the message “no matches found” if no choices match the current request. It
takes a parameter for the translated message. Default is:

%s

autocomplete_html_format
HTML string used to format the list of HTML choices. It takes a positionnal parameter which contains the
list of HTML choices which come from choice_html(). Default is:

%s

add_another_url_name
Name of the url to add another choice via a javascript popup. If empty then no “add another” link will
appear.

add_another_url_kwargs
Keyword arguments to use when reversing the add another url.

widget_template
A special attribute used only by the widget. If it is set, the widget will use that instead of the default
autocomplete_light/widget.html.

10.2. Autocomplete class API 55

django-autocomplete-light Documentation, Release 2.3.3

autocomplete_html()
Simple rendering of the autocomplete.

It will append the result of choice_html() for each choice returned by choices_for_request(),
and wrap that in autocomplete_html_format.

choice_html(choice)
Format a choice using choice_html_format.

choice_label(choice)
Return the human-readable representation of a choice. This simple implementation returns the textual
representation.

choice_value(choice)
Return the value of a choice. This simple implementation returns the textual representation.

choices_for_request()
Return the list of choices that are available. Uses request if set, this method is used by
autocomplete_html().

get_add_another_url()
Return the url to use when adding another element

validate_values()
This basic implementation returns True if all values are in choices_for_values().

AutocompleteTemplate

class autocomplete_light.autocomplete.template.AutocompleteTemplate(request=None,
val-
ues=None)

This extension of AutocompleteBase supports two new attributes:

choice_template
Name of the template to use to render a choice in the autocomplete. If none is specified, then
AutocompleteBase will render the choice.

autocomplete_template
Name of the template to use to render the autocomplete. Again, fall back on AutocompleteBase if
this is None.

autocomplete_html()
Render autocomplete_template with base context and {{ choices }}. If
autocomplete_template is None then fall back on base.AutocompleteBase.
autocomplete_html().

choice_html(choice)
Render choice_template with base context and {{ choice }}. If choice_template is None
then fall back on base.AutocompleteBase.choice_html().

get_base_context()
Return a dict to use as base context for all templates.

It contains:

• {{ request }} if available,

• {{ autocomplete }} the “self” instance.

render_template_context(template, extra_context=None)
Render template with base context and extra_context.

56 Chapter 10. API: find hidden gems

django-autocomplete-light Documentation, Release 2.3.3

10.2.3 Business logic Autocomplete mixins

AutocompleteList

class autocomplete_light.autocomplete.list.AutocompleteList
Simple Autocomplete implementation which expects choices to be a list of string choices.

choices
List of string choices.

limit_choices
The maximum of items to suggest from choices.

order_by
order_choices() will use this against choices as an argument sorted().

It was mainly used as a starter for me when doing test-driven development and to ensure that the Autocomplete
pattern would be concretely simple and yet powerful.

choices_for_request()
Return any choices that contains the search string. It is case insensitive and ignores spaces.

choices_for_values()
Return any choices that is in values.

order_choices(choices)
Run sorted() against choices and order_by .

AutocompleteChoiceList

class autocomplete_light.autocomplete.choice_list.AutocompleteChoiceList
Simple AutocompleteList implementation which expects choices to be a list of tuple choices in the
fashion of django.db.models.Field.choices.

choices
List of choice tuples (value, label) like django.db.models.Field.choices. Example:

choices = (
('v', 'Video'),
('p', 'Paper'),

)

limit_choices
The maximum of items to suggest from choices.

order_by
order_choices() will use this against choices as an argument sorted().

choice_label(choice)
Return item 1 of the choice tuple.

choice_value(choice)
Return item 0 of the choice tuple.

choices_for_request()
Return any choices tuple that contains the search string. It is case insensitive and ignores spaces.

choices_for_values()
Return any choices that is in values.

10.2. Autocomplete class API 57

https://docs.python.org/2/library/functions.html#sorted
https://docs.python.org/2/library/functions.html#sorted
http://django.readthedocs.io/en/latest/ref/models/fields.html#django.db.models.Field.choices
http://django.readthedocs.io/en/latest/ref/models/fields.html#django.db.models.Field.choices
https://docs.python.org/2/library/functions.html#sorted

django-autocomplete-light Documentation, Release 2.3.3

AutocompleteModel

class autocomplete_light.autocomplete.model.AutocompleteModel
Autocomplete which considers choices as a queryset.

choices
A queryset.

limit_choices
Maximum number of choices to display.

search_fields
Fields to search in, configurable like on django.contrib.admin.ModelAdmin.
search_fields

split_words
If True, AutocompleteModel splits the search query into words and returns all objects that contain each
of the words, case insensitive, where each word must be in at least one of search_fields. This mimics the
mechanism of django’s django.contrib.admin.ModelAdmin.search_fields.

If ‘or’, AutocompleteModel does the same but returns all objects that contain any of the words.

order_by
If set, it will be used to order choices in the deck. It can be a single field name or an iterable (ie. list, tuple).
However, if AutocompleteModel is instanciated with a list of values, it’ll reproduce the ordering of values.

choice_label(choice)
Return the textual representation of the choice by default.

choice_value(choice)
Return the pk of the choice by default.

choices_for_request()
Return a queryset based on choices using options split_words, search_fields and
limit_choices.

choices_for_values()
Return ordered choices which pk are in values.

order_choices(choices)
Order choices using order_by option if it is set.

validate_values()
Return True if all values where found in choices.

AutocompleteGeneric

class autocomplete_light.autocomplete.generic.AutocompleteGeneric
AutocompleteModel extension which considers choices as a list of querysets, and composes a choice value
with both the content type pk and the actual model pk.

choices
A list of querysets. Example:

choices = (
User.objects.all(),
Group.objects.all(),

)

58 Chapter 10. API: find hidden gems

http://django.readthedocs.io/en/latest/ref/contrib/admin/index.html#django.contrib.admin.ModelAdmin.search_fields
http://django.readthedocs.io/en/latest/ref/contrib/admin/index.html#django.contrib.admin.ModelAdmin.search_fields
http://django.readthedocs.io/en/latest/ref/contrib/admin/index.html#django.contrib.admin.ModelAdmin.search_fields

django-autocomplete-light Documentation, Release 2.3.3

search_fields
A list of lists of fields to search in, configurable like on ModelAdmin.search_fields. The first list of fields
will be used for the first queryset in choices and so on. Example:

search_fields = (
('email', '^name'), # Used for User.objects.all()
('name',) # User for Group.objects.all()

)

AutocompleteGeneric inherits from model.AutocompleteModel and supports limit_choices and
split_words exactly like AutocompleteModel.

However order_by is not supported (yet) in AutocompleteGeneric.

choice_value(choice)
Rely on GenericModelChoiceField to return a string containing the content type id and object id
of the result.

choices_for_request()
Return a list of choices from every queryset in choices.

choices_for_values()
Values which are not found in any querysets of choices are ignored.

validate_values()
Ensure that every choice is part of a queryset in choices.

10.2.4 Autocomplete classes with both rendering and business logic

10.2.5 Views

class autocomplete_light.views.AutocompleteView(**kwargs)
Simple view that routes the request to the appropriate autocomplete.

Constructor. Called in the URLconf; can contain helpful extra keyword arguments, and other things.

get(request, *args, **kwargs)
Return an HttpResponse with the return value of autocomplete.autocomplete_html().

This view is called by the autocomplete script, it is expected to return the rendered autocomplete box
contents.

To do so, it gets the autocomplete class from the registry, given the url keyword argument autocomplete,
that should be the autocomplete name.

Then, it instanciates the autocomplete with no argument as usual, and calls autocomplete.init_for_request,
passing all arguments it recieved.

Finnaly, it makes an HttpResponse with the result of autocomplete.autocomplete_html(). The javascript
will use that to fill the autocomplete suggestion box.

post(request, *args, **kwargs)
Just proxy autocomplete.post().

This is the key to communication between the autocomplete and the widget in javascript. You can use it to
create results and such.

class autocomplete_light.views.CreateView(**kwargs)
Simple wrapper for generic.CreateView, that responds to _popup.

Constructor. Called in the URLconf; can contain helpful extra keyword arguments, and other things.

10.2. Autocomplete class API 59

django-autocomplete-light Documentation, Release 2.3.3

form_valid(form)
If request.GET._popup, return some javascript.

10.3 Form, fields and widgets API

10.3.1 Widgets

WidgetBase

class autocomplete_light.widgets.WidgetBase(autocomplete=None, wid-
get_js_attributes=None, auto-
complete_js_attributes=None, ex-
tra_context=None, registry=None, wid-
get_template=None, widget_attrs=None)

Base widget for autocompletes.

attrs
HTML <input /> attributes, such as class, placeholder, etc . . . Note that any
data-autocomplete-* attribute will be parsed as an option for yourlabs.Autocomplete js
object. For example:

attrs={ ‘placeholder’: ‘foo’, ‘data-autocomplete-minimum-characters’: 0 ‘class’: ‘bar’,

}

Will render like::

<input placeholder=”foo” data-autocomplete-minimum-characters=”0” class=”autocomplete bar”

/>

Which will set by the way yourlabs.Autocomplete.minimumCharacters option - the naming
conversion is handled by jQuery.

widget_attrs
HTML widget container attributes. Note that any data-widget-* attribute will be parsed as an option
for yourlabs.Widget js object. For example:

widget_attrs={
'data-widget-maximum-values': 6,
'class': 'country-autocomplete',

}

Will render like:

<span
id="country-wrapper"
data-widget-maximum-values="6"
class="country-autocomplete autcomplete-light-widget"

/>

Which will set by the way yourlabs.Widget.maximumValues - note that the naming conversion
is handled by jQuery.

widget_js_attributes
DEPRECATED in favor of :py:attr::widget_attrs.

A dict of options that will override the default widget options. For example:

60 Chapter 10. API: find hidden gems

django-autocomplete-light Documentation, Release 2.3.3

widget_js_attributes = {'max_values': 8}

The above code will set this HTML attribute:

data-max-values="8"

Which will override the default javascript widget maxValues option (which is 0).

It is important to understand naming conventions which are sparse unfortunately:

• python: lower case with underscores ie. max_values,

• HTML attributes: lower case with dashes ie. data-max-values,

• javascript: camel case, ie. maxValues.

The python to HTML name conversion is done by the autocomplete_light_data_attributes template filter.

The HTML to javascript name conversion is done by the jquery plugin.

autocomplete_js_attributes
DEPRECATED in favor of :py:attr::attrs.

A dict of options like for widget_js_attributes. However, note that HTML attributes will be
prefixed by data-autocomplete- instead of just data-. This allows the jQuery plugins to make the
distinction between attributes for the autocomplete instance and attributes for the widget instance.

extra_context
Extra context dict to pass to the template.

widget_template
Template to use to render the widget. Default is autocomplete_light/widget.html.

ChoiceWidget

class autocomplete_light.widgets.ChoiceWidget(autocomplete=None, wid-
get_js_attributes=None, auto-
complete_js_attributes=None, ex-
tra_context=None, registry=None, wid-
get_template=None, widget_attrs=None,
*args, **kwargs)

Widget that provides an autocomplete for zero to one choice.

MultipleChoiceWidget

class autocomplete_light.widgets.MultipleChoiceWidget(autocomplete=None, wid-
get_js_attributes=None,
autocom-
plete_js_attributes=None,
extra_context=None,
registry=None, wid-
get_template=None, wid-
get_attrs=None, *args,
**kwargs)

Widget that provides an autocomplete for zero to n choices.

10.3. Form, fields and widgets API 61

django-autocomplete-light Documentation, Release 2.3.3

TextWidget

class autocomplete_light.widgets.TextWidget(autocomplete=None, wid-
get_js_attributes=None, auto-
complete_js_attributes=None, ex-
tra_context=None, registry=None, wid-
get_template=None, widget_attrs=None,
*args, **kwargs)

Widget that just adds an autocomplete to fill a text input.

Note that it only renders an <input>, so attrs and widget_attrs are merged together.

render(name, value, attrs=None)
Proxy Django’s TextInput.render()

10.3.2 Fields

FieldBase

class autocomplete_light.fields.FieldBase(autocomplete=None, registry=None, wid-
get=None, widget_js_attributes=None,
autocomplete_js_attributes=None, ex-
tra_context=None, *args, **kwargs)

ChoiceField

class autocomplete_light.fields.ChoiceField(autocomplete=None, registry=None, wid-
get=None, widget_js_attributes=None,
autocomplete_js_attributes=None, ex-
tra_context=None, *args, **kwargs)

widget
alias of ChoiceWidget

MultipleChoiceField

class autocomplete_light.fields.MultipleChoiceField(autocomplete=None, reg-
istry=None, widget=None,
widget_js_attributes=None, au-
tocomplete_js_attributes=None,
extra_context=None, *args,
**kwargs)

widget
alias of MultipleChoiceWidget

62 Chapter 10. API: find hidden gems

django-autocomplete-light Documentation, Release 2.3.3

ModelChoiceField

class autocomplete_light.fields.ModelChoiceField(autocomplete=None, reg-
istry=None, widget=None, wid-
get_js_attributes=None, auto-
complete_js_attributes=None, ex-
tra_context=None, *args, **kwargs)

widget
alias of ChoiceWidget

ModelMultipleChoiceField

class autocomplete_light.fields.ModelMultipleChoiceField(autocomplete=None,
registry=None, wid-
get=None, wid-
get_js_attributes=None,
autocom-
plete_js_attributes=None,
extra_context=None,
*args, **kwargs)

widget
alias of MultipleChoiceWidget

GenericModelChoiceField

class autocomplete_light.fields.GenericModelChoiceField(autocomplete=None,
registry=None, wid-
get=None, wid-
get_js_attributes=None,
autocom-
plete_js_attributes=None,
extra_context=None,
*args, **kwargs)

Simple form field that converts strings to models.

prepare_value(value)
Given a model instance as value, with content type id of 3 and pk of 5, return such a string ‘3-5’.

to_python(value)
Given a string like ‘3-5’, return the model of content type id 3 and pk 5.

widget
alias of ChoiceWidget

10.3. Form, fields and widgets API 63

django-autocomplete-light Documentation, Release 2.3.3

GenericModelMultipleChoiceField

class autocomplete_light.fields.GenericModelMultipleChoiceField(autocomplete=None,
registry=None,
widget=None,
wid-
get_js_attributes=None,
autocom-
plete_js_attributes=None,
ex-
tra_context=None,
*args,
**kwargs)

Simple form field that converts strings to models.

widget
alias of MultipleChoiceWidget

10.3.3 Form stuff

modelform_factory

ModelForm

ModelFormMetaclass

SelectMultipleHelpTextRemovalMixin

VirtualFieldHandlingMixin

GenericM2MRelatedObjectDescriptorHandlingMixin

FormfieldCallback

ModelFormMetaclass

10.4 Script API

10.4.1 autocomplete.js

The autocomplete box script, see autocomplete.js API documentation.

10.4.2 widget.js

The script that ties the autocomplete box script and the hidden <select> used by django, see widget.js API docu-
mentation.

10.4.3 text_widget.js

The script that ties the autocomplete box script with a text input, see text_widget.js API docummentation.

64 Chapter 10. API: find hidden gems

_static/autocomplete.html
_static/widget.html
_static/widget.html
_static/text_widget.html

django-autocomplete-light Documentation, Release 2.3.3

10.4.4 addanother.js

The script that enables adding options to a <select> outside the admin, see addanother.js API documentation.

10.4.5 remote.js

The script that overrides a method from widget.js to create choices on the fly, see remote.js API documentation.

10.4. Script API 65

_static/addanother.html
_static/remote.html

django-autocomplete-light Documentation, Release 2.3.3

66 Chapter 10. API: find hidden gems

CHAPTER 11

Upgrade

Any change is documented in the changelog, so upgrading from a version to another is always documented there.
Usualy, upgrade from pip with a command like pip install -U django-autocomplete-light. Check
the CHANGELOG for BC (Backward Compatibility) breaks. There should is no backward compatibility for minor
version upgrades ie. from 1.1.3 to 1.1.22, but there might be some minor BC breaks for middle upgrades ie. 1.2.0 to
1.3.0.

11.1 v1 to v2

There are major changes between v1 and v2, upgrading has been extensively documented:

11.1.1 Upgrading from django-autocomplete-light v1 to v2

Please enjoy this v1 to v2 upgrade instructions to upgrade from DAL 1.x to 2.x (documented with love !).

Quick upgrade

• the Autocomplete class design hasn’t changed at all.

• yourlabsWidget() doesn’t parses data-* options the same,

• the django/form python code has been re-organised ie. get_widgets_dict() is gone and
autocomplete_light.ModelForm wraps around all features by default.

• use autocomplete_light.ModelForm instead of autocomplete_light.GenericModelForm -
generic foreign keys and django-generic-m2m are supported by default if installed.

67

django-autocomplete-light Documentation, Release 2.3.3

Detailed upgrade

You should not use widget directly anymore

We used to have things like this:

class YourForm(autocomplete_light.GenericModelForm):
user = forms.ModelChoiceField(User.objects.all(),

widget=autocomplete_light.ChoiceWidget('UserAutocomplete'))

related = GenericModelChoiceField(
widget=autocomplete_light.ChoiceWidget(

autocomplete='AutocompleteTaggableItems',
autocomplete_js_attributes={'minimum_characters': 0}))

class Meta:
model = YourModel

This caused several problems:

• broke a DRY principle: if you have defined a user foreign key and registered an Autocomplete for the model
in question, User, then you should not have to repeat this.

• broke the DRY principle since you had to set choices on both the ModelChoiceField and the Autocomplete -
UserAutocomplete in this example.

• also, validation was done in the widget’s render() function, mostly for security reasons. Validation is not
done in the widget anymore, instead it is done in autocomplete_light.fields.

What should the above code be like ? Well it depends, it could just be:

class YourForm(autocomplete_light.ModelForm):
class Meta:

model = YourModel

If you have registered an Autocomplete for the model that the user ForeignKey is for, then
autocomplete_light.ModelForm will pick it up automatically.

Assuming you have registered a generic autocomplete, autocomplete_light.ModelForm will pick it up auto-
matically.

If you want Django’s default behavior back (using a <select> tag), then you could tell autocomplete_light.
ModelForm to not be “autocomplete-aware” for user as such:

class YourForm(autocomplete_light.ModelForm):
class Meta:

model = YourModel
autocomplete_exclude = ('user',)

autocomplete_light.ModelChoiceField and autocomplete_light.
GenericModelChoiceField:

class YourForm(autocomplete_light.ModelForm):
user = autocomplete_light.ModelChoiceField('UserAutocomplete')
related = autocomplete_light.GenericModelChoiceField('AutocompleteTaggableItems')

class Meta:
model = YourModel
autocomplete_exclude = ('user',)

68 Chapter 11. Upgrade

django-autocomplete-light Documentation, Release 2.3.3

You can still override widgets the same way as before, but you should consider the DRY breaking implications (which
are not specific to django-autocomplete-light, but Django’s design in general).

Specification of the Autocomplete class to use

New rules are:

• if an Autocomplete class was registered for a model then it becomes the default Autocomplete class for auto-
completion on that model,

• other Autocomplete classes registered for a model will not be used by default

You can still define the Autocomplete class you want in the field definition:

class FooForm(autocomplete_light.ModelForm):
bar = autocomplete_light.ModelChoiceField('SpecialBarAutocomplete')

class Meta:
model = Foo

But this will break some break django DRY logic. Instead, this won’t break DRY:

class FooForm(autocomplete_light.ModelForm):
class Meta:

model = Foo
autocomplete_names = {'bar': 'SpecialBarAutocomplete'}

Python class re-organisation

Form classes like FixedModelform or GenericModelForm were renamed. But if you can, just inherit from
autocomplete_light.ModelForm instead.

Generic field classes were moved from autocomplete_light.contrib.generic_m2m into
autocomplete_light.fields: just import autocomplete_light.GenericModelChoiceField and
autocomplete_light.GenericModelMultipleChoiceField <autocomplete_light.fields.
GenericModelMultipleChoiceField.

Deprecation of autocomplete_js_attributes and widget_js_attributes

In the past, we used autocomplete_js_attributes and widget_js_attributes. Those are deprecated
and HTML data attributes should be used instead.

For example:

class PersonAutocomplete(autocomplete_light.AutocompleteModelBase):
model = Person
autocomplete_js_attributes = {

'minimum_characters': 0,
'placeholder': 'foo',

}
widget_js_attributes = {'max_values': 3}

Should now be:

11.1. v1 to v2 69

django-autocomplete-light Documentation, Release 2.3.3

class PersonAutocomplete(autocomplete_light.AutocompleteModelBase):
model = Person
attrs = {

'data-autcomplete-minimum-characters': 0,
'placeholder': 'foo',

}
widget_attrs = {'data-widget-maximum-values': 3}

As you probably understand already magic inside autocomplete_js_attributes and
widget_js_attributes is gone, we’re just setting plain simple HTML attributes now with attrs.

Also notice the other two differences which are detailed below:

• max-values was renamed to maximum-values (see below)

• data-autocomplete-placeholder is gone in favor of HTML5 placeholder attribute (see below)

max-values was renamed to maximum-values

For consistency with one of my naming conventions which is: no abbreviations.

data-autocomplete-placeholder is gone in favor of HTML5 placeholder attribute

It made no sense to keep data-autocomplete-placeholder since we now have the HTML5 placeholder
attribute.

Widget template changes

This is a side effect from the deprecation of autocomplete_js_attributes and widget_js_attributes.

This:

<span class="autocomplete-light-widget {{ name }}
{% if widget.widget_js_attributes.max_values == 1 %}single{% else %}multiple{%

→˓endif %}"
id="{{ widget.html_id }}-wrapper"
{{ widget.widget_js_attributes|autocomplete_light_data_attributes }}
{{ widget.autocomplete_js_attributes|autocomplete_light_data_attributes:

→˓'autocomplete-' }}
>

Is now:

Script changes

.yourlabsWidget() used to parse data-* attributes:

• data-foo-bar used to set the JS attribute yourlabs.Widget.fooBar,

• data-autocomplete-foo-bar used to set the JS attribute yourlabs.Widget.autocomplete.
fooBar.

70 Chapter 11. Upgrade

django-autocomplete-light Documentation, Release 2.3.3

Now:

• .yourlabsWidget() parses data-widget-* attributes and,

• .yourlabsAutocomplete() parses data-autocomplete-* on the ‘‘<input />‘‘ !

So this:

<span class="autocomplete-light-widget" data-autocomplete-foo-bar="2" data-foo-bar="3
→˓">

<input .. />

Becomes:

<input data-autocomplete-foo-bar="2" ... />

.choiceDetail and .choiceUpdate were renamed to .choice-detail and .choice-update

This makes the CSS class names standard.

11.1. v1 to v2 71

django-autocomplete-light Documentation, Release 2.3.3

72 Chapter 11. Upgrade

CHAPTER 12

Documentation that has not yet been ported to v2

12.1 CharField autocompletes

django-tagging and derivates like django-tagging-ng provide a TagField, which is a CharField expecting comma
separated tags. Behind the scenes, this field is parsed and Tag model instances are created and/or linked.

A stripped variant of widget.js, text_widget.js, enables autocompletion for such a field. To make it even
easier, a stripped variant of Widget, TextWidget, automates configuration of text_widget.js.

Needless to say, TextWidget and text_widget.js have a structure that is consistent with Widget and
widget.js.

It doesn’t have many features for now, but feel free to participate to the project on GitHub.

As usual, a working example lives in test_project. in app charfield_autocomplete.

Warning: Note that this feature was added in version 1.0.16, if you have overloaded autocomplete_light/
static.html from a previous version then you should make it load autocomplete_light/
text_widget.js to get this new feature.

12.1.1 Example

This demonstrates a working usage of TextWidget:

import autocomplete_light
from django import forms
from models import Taggable

class TaggableForm(forms.ModelForm):
class Meta:

model = Taggable
widgets = {

73

http://code.google.com/p/django-tagging/
https://github.com/svetlyak40wt/django-tagging-ng
https://github.com/yourlabs/django-autocomplete-light

django-autocomplete-light Documentation, Release 2.3.3

'tags': autocomplete_light.TextWidget('TagAutocomplete'),
}

FTR, using the form in the admin is still as easy:

from django.contrib import admin
from forms import TaggableForm
from models import Taggable

class TaggableInline(admin.TabularInline):
form = TaggableForm
model = Taggable

class TaggableAdmin(admin.ModelAdmin):
form = TaggableForm
list_display = ['name', 'tags']
inlines = [TaggableInline]

admin.site.register(Taggable, TaggableAdmin)

So is registering an Autocomplete for Tag:

import autocomplete_light
from tagging.models import Tag

autocomplete_light.register(Tag)

12.1.2 Django-tagging

This demonstrates the models setup used for the above example, using django-taggit, which provides a normal
CharField behaviour:

import tagging
from django.db import models
from tagging.fields import TagField

class Taggable(models.Model):
name = models.CharField(max_length=50)
tags = TagField(null=True, blank=True)
parent = models.ForeignKey('self', null=True, blank=True)

def __unicode__(self):
return self.name

tagging.register(Taggable, tag_descriptor_attr='etags')

12.1.3 Django-taggit

For django-taggit, you need autocomplete_light.contrib.taggit_tagfield.

74 Chapter 12. Documentation that has not yet been ported to v2

http://pypi.python.org/pypi/django-taggit

django-autocomplete-light Documentation, Release 2.3.3

12.2 Add another popup outside the admin

This documentation drives throught the example app non_admin_add_anotherwhich lives in test_project.

Implementing this feature is utterly simple and can be done in two steps:

• make your create view to return some script if called with _popup=1,

• add add_another_url_name attribute to your Autocomplete,

Warning: Note that this feature was added in version 1.0.21, if you have overloaded autocomplete_light/
static.html from a previous version then you should make it load autocomplete_light/
addanother.js to get this new feature.

12.2.1 Specifications

Consider such a model:

from __future__ import unicode_literals

from django.core import urlresolvers
from django.db import models
from django.utils.encoding import python_2_unicode_compatible

@python_2_unicode_compatible
class NonAdminAddAnotherModel(models.Model):

name = models.CharField(max_length=100)
widgets = models.ManyToManyField('self', blank=True)

def get_absolute_url(self):
return urlresolvers.reverse(

'non_admin_add_another_model_update', args=(self.pk,))

def __str__(self):
return self.name

And we want to have add/update views outside the admin, with autocompletes for relations as well as a +/add-another
button just like in the admin.

Technical details come from a blog post written by me a couple years ago, Howto: javascript popup form returning
value for select like Django admin for foreign keys.

12.2.2 Create view

A create view opened via the add-another button should return such a body:

<script type="text/javascript">
opener.dismissAddAnotherPopup(

window,
"name of created model",
"id of created model"

);
</script>

12.2. Add another popup outside the admin 75

http://blog.yourlabs.org/post/20001556462/howto-javascript-popup-form-returning-value-for-select
http://blog.yourlabs.org/post/20001556462/howto-javascript-popup-form-returning-value-for-select

django-autocomplete-light Documentation, Release 2.3.3

Note that you could also use autocomplete_light.CreateView which simply wraps around django.
views.generic.edit.CreateView.form_valid() to do that, example usage:

import autocomplete_light.shortcuts as al

from autocomplete_light.compat import url, urls
from django.views import generic

from .forms import NonAdminAddAnotherModelForm
from .models import NonAdminAddAnotherModel

urlpatterns = urls([
url(r'$', al.CreateView.as_view(

model=NonAdminAddAnotherModel, form_class=NonAdminAddAnotherModelForm),
name='non_admin_add_another_model_create'),

url(r'(?P<pk>\d+)/$', generic.UpdateView.as_view(
model=NonAdminAddAnotherModel, form_class=NonAdminAddAnotherModelForm),
name='non_admin_add_another_model_update'),

])

Note: It is not mandatory to use url namespaces.

12.2.3 Autocompletes

Simply register an Autocomplete for widget, with an add_another_url_name argument, for example:

import autocomplete_light.shortcuts as autocomplete_light

from .models import NonAdminAddAnotherModel

autocomplete_light.register(NonAdminAddAnotherModel,
add_another_url_name='non_admin_add_another_model_create')

12.3 Proposing results from a remote API

This documentation is optionnal, but it is complementary with all other documentation. It aims advanced users.

Consider a social network about music. In order to propose all songs in the world in its autocomplete, it should either:

• have a database with all songs of the world,

• use a simple REST API to query a database with all songs world

The purpose of this documentation is to describe every elements involved. Note that a living demonstration is available
in test_remote_project, where one project serves a full database of cities via an API to another.

12.3.1 Example

In test_remote_project/remote_autocomplete, of course you should not hardcode urls like that in actual projects:

from cities_light.contrib.autocompletes import *

76 Chapter 12. Documentation that has not yet been ported to v2

django-autocomplete-light Documentation, Release 2.3.3

import autocomplete_light

autocomplete_light.register(Country, CountryRestAutocomplete,
source_url='http://localhost:8000/cities_light/country/')

autocomplete_light.register(Region, RegionRestAutocomplete,
source_url='http://localhost:8000/cities_light/region/')

autocomplete_light.register(City, CityRestAutocomplete,
source_url='http://localhost:8000/cities_light/city/')

Check out the documentation of RemoteCountryChannel and RemoteCityChannel for more.

12.3.2 API

class autocomplete_light.autocomplete.rest_model.AutocompleteRestModel

download(url)
Given an url to a remote object, return the corresponding model from the local database.

The default implementation expects url to respond with a JSON dict of the attributes of an object.

For relation attributes, it expect the value to be another url that will respond with a JSON dict of the
attributes of the related object.

It calls model_for_source_url() to find which model class corresponds to which url. This allows down-
load() to be recursive.

download_choice(choice)
Take a choice’s dict representation, return it’s local pk which might have been just created.

If your channel works with 0 to 1 API call, consider overriding this method. If your channel is susceptible
of using several different API calls, consider overriding download().

get_remote_choices(max)
Parses JSON from the API, return model instances.

The JSON should contain a list of dicts. Each dict should contain the attributes of an object. Relation
attributes should be represented by their url in the API, which is set to model._source_url.

get_source_url(limit)
Return an API url for the current autocomplete request.

By default, return self.source_url with the data dict returned by get_source_url_data().

get_source_url_data(limit)
Given a limit of items, return a dict of data to send to the API.

By default, it passes current request GET arguments, along with format: ‘json’ and the limit.

model_for_source_url(url)
Take an URL from the API this remote channel is supposed to work with, return the model class to use for
that url.

It is only needed for the default implementation of download(), because it has to follow relations recur-
sively.

By default, it will return the model of self.choices.

12.3. Proposing results from a remote API 77

django-autocomplete-light Documentation, Release 2.3.3

12.3.3 Javascript fun

Channels with bootstrap=’remote’ get a deck using RemoteChannelDeck’s getValue() rather than the default getValue()
function.

if (window.yourlabs === undefined) window.yourlabs = {};

yourlabs.RemoteAutocompleteWidget = {
/*
The default deck getValue() implementation just returns the PK from the
choice HTML. RemoteAutocompleteWidget.getValue's implementation checks for
a url too. If a url is found, it will post to that url and expect the pk to
be in the response.

This is how autocomplete-light supports proposing values that are not there
in the database until user selection.

*/
getValue: function(choice) {

var value = choice.data('value');

if (typeof(value) === 'string' && isNaN(value) && value.match(/^https?:/)) {
$.ajax(this.autocompleteOptions.url, {

async: false,
type: 'post',
data: {

'value': value
},
success: function(text, jqXHR, textStatus) {

value = text;
}

});

choice.data('value', value);
}

return value;
}

}

$(document).bind('yourlabsWidgetReady', function() {
// Instanciate decks with RemoteAutocompleteWidget as override for all widgets

→˓with
// autocomplete 'remote'.
$('body').on('initialize', '.autocomplete-light-widget[data-bootstrap=rest_model]

→˓', function() {
$(this).yourlabsWidget(yourlabs.RemoteAutocompleteWidget);

});
});

12.4 Django 1.3 support workarounds

The app is was developed for Django 1.4. However, there are workarounds to get it to work with Django 1.3 too.
This document attemps to provide an exhaustive list of notes that should be taken in account when using the app with
django-autocomplete-light.

78 Chapter 12. Documentation that has not yet been ported to v2

django-autocomplete-light Documentation, Release 2.3.3

12.4.1 modelform_factory

The provided autocomplete_light.modelform_factory relies on Django 1.4’s modelform_factory that accepts a ‘wid-
gets’ dict.

Django 1.3 does not allow such an argument. You may however define your form as such:

class AuthorForm(forms.ModelForm):
class Meta:

model = Author
widgets = autocomplete_light.get_widgets_dict(Author)

12.5 Support for django-generic-m2m

See GenericManyToMany documentation.

12.6 Support for django-hvad

12.7 Support for django-taggit

django-taggit does it slightly differently. It is supported by autocomplete_light as of 1.0.25. First you need to register
the taggit Tag class and for each form you need to set the TaggitWidget.

First register the tag:

from taggit.models import Tag
import autocomplete_light.shortcuts as al
al.register(Tag)

Every form which should have the autocomplete taggit widget should look like:

from autocomplete_light.contrib.taggit_field import TaggitField, TaggitWidget

class AppEditForm(forms.ModelForm):
tags = TaggitField(widget=TaggitWidget('TagAutocomplete'))
class Meta:

model = App

12.5. Support for django-generic-m2m 79

https://github.com/alex/django-taggit

django-autocomplete-light Documentation, Release 2.3.3

80 Chapter 12. Documentation that has not yet been ported to v2

CHAPTER 13

Indices and tables

• genindex

• modindex

• search

81

django-autocomplete-light Documentation, Release 2.3.3

82 Chapter 13. Indices and tables

Python Module Index

a
autocomplete_light.autocomplete, 59
autocomplete_light.autocomplete.generic,

58
autocomplete_light.autocomplete.model,

58
autocomplete_light.autocomplete.template,

56
autocomplete_light.fields, 62
autocomplete_light.registry, 53
autocomplete_light.views, 59
autocomplete_light.widgets, 60

83

django-autocomplete-light Documentation, Release 2.3.3

84 Python Module Index

Index

A
add_another_url_kwargs (autocom-

plete_light.autocomplete.base.AutocompleteBase
attribute), 55

add_another_url_name (autocom-
plete_light.autocomplete.base.AutocompleteBase
attribute), 55

attrs (autocomplete_light.widgets.WidgetBase attribute),
60

autocomplete_for_generic() (autocom-
plete_light.registry.AutocompleteRegistry
method), 53

autocomplete_for_model() (autocom-
plete_light.registry.AutocompleteRegistry
method), 53

autocomplete_html() (autocom-
plete_light.autocomplete.base.AutocompleteBase
method), 55

autocomplete_html() (autocom-
plete_light.autocomplete.base.AutocompleteInterface
method), 55

autocomplete_html() (autocom-
plete_light.autocomplete.template.AutocompleteTemplate
method), 56

autocomplete_html_format (autocom-
plete_light.autocomplete.base.AutocompleteBase
attribute), 55

autocomplete_js_attributes (autocom-
plete_light.widgets.WidgetBase attribute),
61

autocomplete_light.autocomplete (module), 59
autocomplete_light.autocomplete.generic (module), 58
autocomplete_light.autocomplete.model (module), 58
autocomplete_light.autocomplete.template (module), 56
autocomplete_light.fields (module), 62
autocomplete_light.registry (module), 53
autocomplete_light.views (module), 59
autocomplete_light.widgets (module), 60
autocomplete_model_base (autocom-

plete_light.registry.AutocompleteRegistry
attribute), 53

autocomplete_template (autocom-
plete_light.autocomplete.template.AutocompleteTemplate
attribute), 56

AutocompleteBase (class in autocom-
plete_light.autocomplete.base), 55

AutocompleteChoiceList (class in autocom-
plete_light.autocomplete.choice_list), 57

AutocompleteGeneric (class in autocom-
plete_light.autocomplete.generic), 58

AutocompleteInterface (class in autocom-
plete_light.autocomplete.base), 54

AutocompleteList (class in autocom-
plete_light.autocomplete.list), 57

AutocompleteModel (class in autocom-
plete_light.autocomplete.model), 58

AutocompleteRegistry (class in autocom-
plete_light.registry), 53

AutocompleteRestModel (class in autocom-
plete_light.autocomplete.rest_model), 77

AutocompleteTemplate (class in autocom-
plete_light.autocomplete.template), 56

AutocompleteView (class in autocomplete_light.views),
59

autodiscover() (in module autocomplete_light.registry),
54

C
choice_html() (autocom-

plete_light.autocomplete.base.AutocompleteBase
method), 56

choice_html() (autocom-
plete_light.autocomplete.template.AutocompleteTemplate
method), 56

choice_html_format (autocom-
plete_light.autocomplete.base.AutocompleteBase
attribute), 55

choice_label() (autocom-
plete_light.autocomplete.base.AutocompleteBase

85

django-autocomplete-light Documentation, Release 2.3.3

method), 56
choice_label() (autocom-

plete_light.autocomplete.choice_list.AutocompleteChoiceList
method), 57

choice_label() (autocom-
plete_light.autocomplete.model.AutocompleteModel
method), 58

choice_template (autocom-
plete_light.autocomplete.template.AutocompleteTemplate
attribute), 56

choice_value() (autocom-
plete_light.autocomplete.base.AutocompleteBase
method), 56

choice_value() (autocom-
plete_light.autocomplete.choice_list.AutocompleteChoiceList
method), 57

choice_value() (autocom-
plete_light.autocomplete.generic.AutocompleteGeneric
method), 59

choice_value() (autocom-
plete_light.autocomplete.model.AutocompleteModel
method), 58

ChoiceField (class in autocomplete_light.fields), 62
choices (autocomplete_light.autocomplete.choice_list.AutocompleteChoiceList

attribute), 57
choices (autocomplete_light.autocomplete.generic.AutocompleteGeneric

attribute), 58
choices (autocomplete_light.autocomplete.list.AutocompleteList

attribute), 57
choices (autocomplete_light.autocomplete.model.AutocompleteModel

attribute), 58
choices_for_request() (autocom-

plete_light.autocomplete.base.AutocompleteBase
method), 56

choices_for_request() (autocom-
plete_light.autocomplete.choice_list.AutocompleteChoiceList
method), 57

choices_for_request() (autocom-
plete_light.autocomplete.generic.AutocompleteGeneric
method), 59

choices_for_request() (autocom-
plete_light.autocomplete.list.AutocompleteList
method), 57

choices_for_request() (autocom-
plete_light.autocomplete.model.AutocompleteModel
method), 58

choices_for_values() (autocom-
plete_light.autocomplete.base.AutocompleteInterface
method), 55

choices_for_values() (autocom-
plete_light.autocomplete.choice_list.AutocompleteChoiceList
method), 57

choices_for_values() (autocom-
plete_light.autocomplete.generic.AutocompleteGeneric

method), 59
choices_for_values() (autocom-

plete_light.autocomplete.list.AutocompleteList
method), 57

choices_for_values() (autocom-
plete_light.autocomplete.model.AutocompleteModel
method), 58

ChoiceWidget (class in autocomplete_light.widgets), 61
CreateView (class in autocomplete_light.views), 59

D
download() (autocomplete_light.autocomplete.rest_model.AutocompleteRestModel

method), 77
download_choice() (autocom-

plete_light.autocomplete.rest_model.AutocompleteRestModel
method), 77

E
empty_html_format (autocom-

plete_light.autocomplete.base.AutocompleteBase
attribute), 55

extra_context (autocomplete_light.widgets.WidgetBase
attribute), 61

extract_args() (autocom-
plete_light.registry.AutocompleteRegistry
class method), 53

F
FieldBase (class in autocomplete_light.fields), 62
form_valid() (autocomplete_light.views.CreateView

method), 59

G
GenericModelChoiceField (class in autocom-

plete_light.fields), 63
GenericModelMultipleChoiceField (class in autocom-

plete_light.fields), 64
get() (autocomplete_light.views.AutocompleteView

method), 59
get_absolute_url() (autocom-

plete_light.autocomplete.base.AutocompleteInterface
method), 55

get_add_another_url() (autocom-
plete_light.autocomplete.base.AutocompleteBase
method), 56

get_base_context() (autocom-
plete_light.autocomplete.template.AutocompleteTemplate
method), 56

get_remote_choices() (autocom-
plete_light.autocomplete.rest_model.AutocompleteRestModel
method), 77

get_source_url() (autocom-
plete_light.autocomplete.rest_model.AutocompleteRestModel
method), 77

86 Index

django-autocomplete-light Documentation, Release 2.3.3

get_source_url_data() (autocom-
plete_light.autocomplete.rest_model.AutocompleteRestModel
method), 77

L
limit_choices (autocom-

plete_light.autocomplete.choice_list.AutocompleteChoiceList
attribute), 57

limit_choices (autocom-
plete_light.autocomplete.list.AutocompleteList
attribute), 57

limit_choices (autocom-
plete_light.autocomplete.model.AutocompleteModel
attribute), 58

M
model_for_source_url() (autocom-

plete_light.autocomplete.rest_model.AutocompleteRestModel
method), 77

ModelChoiceField (class in autocomplete_light.fields),
63

ModelMultipleChoiceField (class in autocom-
plete_light.fields), 63

MultipleChoiceField (class in autocomplete_light.fields),
62

MultipleChoiceWidget (class in autocom-
plete_light.widgets), 61

O
order_by (autocomplete_light.autocomplete.choice_list.AutocompleteChoiceList

attribute), 57
order_by (autocomplete_light.autocomplete.list.AutocompleteList

attribute), 57
order_by (autocomplete_light.autocomplete.model.AutocompleteModel

attribute), 58
order_choices() (autocom-

plete_light.autocomplete.list.AutocompleteList
method), 57

order_choices() (autocom-
plete_light.autocomplete.model.AutocompleteModel
method), 58

P
post() (autocomplete_light.views.AutocompleteView

method), 59
prepare_value() (autocom-

plete_light.fields.GenericModelChoiceField
method), 63

R
register() (autocomplete_light.registry.AutocompleteRegistry

method), 53
register() (in module autocomplete_light.registry), 54

render() (autocomplete_light.widgets.TextWidget
method), 62

render_template_context() (autocom-
plete_light.autocomplete.template.AutocompleteTemplate
method), 56

request (autocomplete_light.autocomplete.base.AutocompleteInterface
attribute), 54

S
search_fields (autocom-

plete_light.autocomplete.generic.AutocompleteGeneric
attribute), 58

search_fields (autocom-
plete_light.autocomplete.model.AutocompleteModel
attribute), 58

split_words (autocomplete_light.autocomplete.model.AutocompleteModel
attribute), 58

T
TextWidget (class in autocomplete_light.widgets), 62
to_python() (autocomplete_light.fields.GenericModelChoiceField

method), 63

U
unregister() (autocomplete_light.registry.AutocompleteRegistry

method), 54

V
validate_values() (autocom-

plete_light.autocomplete.base.AutocompleteBase
method), 56

validate_values() (autocom-
plete_light.autocomplete.base.AutocompleteInterface
method), 55

validate_values() (autocom-
plete_light.autocomplete.generic.AutocompleteGeneric
method), 59

validate_values() (autocom-
plete_light.autocomplete.model.AutocompleteModel
method), 58

values (autocomplete_light.autocomplete.base.AutocompleteInterface
attribute), 54

W
widget (autocomplete_light.fields.ChoiceField attribute),

62
widget (autocomplete_light.fields.GenericModelChoiceField

attribute), 63
widget (autocomplete_light.fields.GenericModelMultipleChoiceField

attribute), 64
widget (autocomplete_light.fields.ModelChoiceField at-

tribute), 63
widget (autocomplete_light.fields.ModelMultipleChoiceField

attribute), 63

Index 87

django-autocomplete-light Documentation, Release 2.3.3

widget (autocomplete_light.fields.MultipleChoiceField
attribute), 62

widget_attrs (autocomplete_light.widgets.WidgetBase at-
tribute), 60

widget_js_attributes (autocom-
plete_light.widgets.WidgetBase attribute),
60

widget_template (autocom-
plete_light.autocomplete.base.AutocompleteBase
attribute), 55

widget_template (autocom-
plete_light.widgets.WidgetBase attribute),
61

WidgetBase (class in autocomplete_light.widgets), 60

88 Index

	Projects upgrading to Django 1.9
	Features
	Resources
	Live Demo
	Installation
	Tutorial
	Reference and design documentation
	Topics
	FAQ
	API: find hidden gems
	Upgrade
	Documentation that has not yet been ported to v2
	Indices and tables
	Python Module Index

